2025屆海南省??谑泻蠋煷蟾街泻?谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
2025屆海南省??谑泻蠋煷蟾街泻?谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
2025屆海南省??谑泻蠋煷蟾街泻?谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
2025屆海南省海口市湖南師大附中??谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
2025屆海南省??谑泻蠋煷蟾街泻?谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆海南省??谑泻蠋煷蟾街泻?谥袑W(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè),則()A. B. C. D.2..在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則…等于()A.5 B.6 C.7 D.83.設(shè)點(diǎn)是棱長為的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是()A. B. C. D.4.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.25.在中,點(diǎn)滿足,則()A. B.C. D.6.已知三個(gè)內(nèi)角、、的對(duì)邊分別是,若則的面積等于()A. B. C. D.7.過點(diǎn)A(3,3)且垂直于直線的直線方程為A. B. C. D.8.函數(shù),的值域是()A. B. C. D.9.正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B. C. D.10.若a,b,c∈R,且滿足a>b>c,則下列不等式成立的是()A.1a<C.a(chǎn)c2二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐的高為,體積為,用平行于圓錐底面的平面截圓錐,得到的圓臺(tái)體積是,則該圓臺(tái)的高為_______.12.在中,內(nèi)角,,的對(duì)邊分別為,,.若,,成等比數(shù)列,且,則________.13.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的最小值為______.14.設(shè)是數(shù)列的前項(xiàng)和,且,,則__________.15.設(shè),則等于________.16.不等式的解為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.18.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若求函數(shù)的值域.19.計(jì)算:(1)(2)(3)20.已知從甲地到乙地的公路里程約為240(單位:km).某汽車每小時(shí)耗油量Q(單位:L)與速度x(單位:)()的關(guān)系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①,②,經(jīng)多次檢驗(yàn)得到以下一組數(shù)據(jù):x04060120Q020(1)你認(rèn)為哪一個(gè)是符合實(shí)際的函數(shù)模型,請(qǐng)說明理由;(2)從甲地到乙地,這輛車應(yīng)以多少速度行駛才能使總耗油量最少?21.如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:(1)平面;(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由得,再計(jì)算即可.【詳解】,,所以故選D【點(diǎn)睛】本題考查了以數(shù)列的通項(xiàng)公式為載體求比值的問題,以及歸納推理的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】因?yàn)閿?shù)列為等比數(shù)列,所以,所以.3、B【解析】

以為原點(diǎn),為軸為軸為軸,建立空間直角坐標(biāo)系,計(jì)算三個(gè)平面的法向量,根據(jù)夾角相等得到關(guān)系式:,再利用點(diǎn)到直線的距離公式得到答案.【詳解】`以為原點(diǎn),為軸為軸為軸,建立空間直角坐標(biāo)系.則易知:平面的法向量為平面的法向量為設(shè)平面的法向量為:則,取平面分別與平面和平面所成的銳二面角相等或看作平面的兩條平行直線,到的距離.根據(jù)點(diǎn)到直線的距離公式得,點(diǎn)到點(diǎn)的最短距離都是:故答案為B【點(diǎn)睛】本題考查了空間直角坐標(biāo)系,二面角,最短距離,意在考查學(xué)生的計(jì)算能力和空間想象能力.4、B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、D【解析】

因?yàn)?,所以,即;故選D.6、B【解析】

根據(jù)三角的面積公式求解.【詳解】,故選.【點(diǎn)睛】本題考查三角形的面積計(jì)算.三角形有兩個(gè)面積公式:和,選擇合適的進(jìn)行計(jì)算.7、D【解析】過點(diǎn)A(3,3)且垂直于直線的直線斜率為,代入過的點(diǎn)得到.故答案為D.8、A【解析】

由的范圍求出的范圍,結(jié)合余弦函數(shù)的性質(zhì)即可求出函數(shù)的值域.【詳解】∵,∴,∴當(dāng),即時(shí),函數(shù)取最大值1,當(dāng)即時(shí),函數(shù)取最小值,即函數(shù)的值域?yàn)?,故選A.【點(diǎn)睛】本題主要考查三角函數(shù)在給定區(qū)間內(nèi)求函數(shù)的值域問題,通過自變量的范圍求出整體的范圍是解題的關(guān)鍵,屬基礎(chǔ)題.9、A【解析】

正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點(diǎn):球的體積和表面積10、C【解析】

通過反例可依次排除A,B,D選項(xiàng);根據(jù)不等式的性質(zhì)可判斷出C正確.【詳解】A選項(xiàng):若a=1,b=-2,則1a>1B選項(xiàng):若a=1,b=12,則1aC選項(xiàng):c2+1>0又a>b∴ac2D選項(xiàng):當(dāng)c=0時(shí),ac=bc本題正確選項(xiàng):C【點(diǎn)睛】本題考查不等式性質(zhì)的應(yīng)用,解決此類問題通常采用排除法,利用反例來排除錯(cuò)誤選項(xiàng)即可,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)該圓臺(tái)的高為,由題意,得用平行于圓錐底面的平面截圓錐,得到的小圓錐體積是,則,解得,即該圓臺(tái)的高為3.點(diǎn)睛:本題考查圓錐的結(jié)構(gòu)特征;在處理圓錐的結(jié)構(gòu)特征時(shí)可記住常見結(jié)論,如本題中用平行于圓錐底面的平面截圓錐,截面與底面的面積之比是兩個(gè)圓錐高的比值的平方,所得兩個(gè)圓錐的體積之比是兩個(gè)圓錐高的比值的立方.12、【解析】

A,B,C是三角形內(nèi)角,那么,代入等式中,進(jìn)行化簡(jiǎn)可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因?yàn)?,所以,所?因?yàn)?,,成等比?shù)列,所以,所以,則,整理得,解得.【點(diǎn)睛】本題考查正弦定理和等比數(shù)列運(yùn)用,有一定的綜合性.13、【解析】

用基本量法求出數(shù)列的通項(xiàng)公式,由通項(xiàng)公式可得取最小值時(shí)的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和的最值.首項(xiàng)為負(fù)且遞增的等差數(shù)列,滿足的最大的使得最小,首項(xiàng)為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識(shí)求得最值.14、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項(xiàng),-1為公差的等差的數(shù)列,所以,即.【點(diǎn)睛】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時(shí)構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項(xiàng)公式.15、【解析】

首先根據(jù)題中求出的周期,然后利用周期性即可求出答案.【詳解】由題知,有,故的周期為,故,又因?yàn)?,?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的周期性,屬于基礎(chǔ)題.16、【解析】

把不等式轉(zhuǎn)化為,即可求解.【詳解】由題意,不等式,等價(jià)于,解得.即不等式的解為故答案為:.【點(diǎn)睛】本題主要考查了分式不等式的求解,其中解答中熟記分式不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)計(jì)算表達(dá)出,再根據(jù),兩邊平方求化簡(jiǎn)即可求得.(2)根據(jù),再利用余弦的差角公式展開后分別計(jì)算求解即可.【詳解】(1)由題意,得,,,,.(2),,均為銳角,仍為銳角,,,.【點(diǎn)睛】本題主要考查了根據(jù)向量的數(shù)量積列出關(guān)于三角函數(shù)的等式,再利用三角函數(shù)中的和差角以及湊角求解的方法.屬于中檔題.18、(1)(2);(3).【解析】

(1)先化簡(jiǎn)函數(shù)f(x)的解析式,再求函數(shù)的最小正周期;(2)解不等式,即得函數(shù)的增區(qū)間;(3)根據(jù)三角函數(shù)的性質(zhì)求函數(shù)的值域.【詳解】(1)由題得,所以函數(shù)的最小正周期為.(2)令,所以,所以函數(shù)的單調(diào)增區(qū)間為.(3),所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查三角恒等變換,考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的值域,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.19、(1);(2);(3).【解析】

利用誘導(dǎo)公式,對(duì)每一道題目進(jìn)行化簡(jiǎn)求值.【詳解】(1)原式.(2)原式.(3)原式.【點(diǎn)睛】在使用誘導(dǎo)公式時(shí),注意“奇變偶不變,符號(hào)看象限”法則的應(yīng)用,即輔助角為的奇數(shù)倍,函數(shù)名要改變;若為的偶數(shù)倍,函數(shù)名不改變.20、(1)選擇模型①,見解析;(2)80.【解析】

(1)由題意可知所選函數(shù)模型應(yīng)為單調(diào)遞增函數(shù),即可判斷選擇;(2)將,代入函數(shù)型①,可得出的值,進(jìn)而可得出總耗油量關(guān)于速度的函數(shù)關(guān)系式,進(jìn)而得解.【詳解】(1)選擇模型①理由:由題意可知所選函數(shù)模型應(yīng)為單調(diào)遞增函數(shù),而函數(shù)模型②為一個(gè)單調(diào)遞減函數(shù),故選擇模型①.(2)將,代入函數(shù)型①,可得:,則,總耗油量:,當(dāng)時(shí),W有最小值30.甲地到乙地,這輛車以80km/h的速度行駛才能使總耗油量最少.【點(diǎn)睛】本題考查函數(shù)模型的實(shí)際應(yīng)用,考查邏輯思維能力,考查實(shí)際應(yīng)用能力,屬于常考題.21、(1)見解析;(2)見解析【解析】

(1)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.(2)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進(jìn)而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質(zhì)可證PA⊥BE.【詳解】(1)連接AF交BE于Q,連接QO,因?yàn)镋,F(xiàn)分別為邊PA,PB的中點(diǎn),所以Q為△PAB的重心,可得:2,又因?yàn)镺為線段AC的中點(diǎn),G是線段CO的中點(diǎn),所以2,于是,所以FG∥QO,因?yàn)镕G?平面EBO,QO?平面EBO,所以FG∥平面EBO.(2)因?yàn)镺為邊AC的中點(diǎn),AB=BC,所以BO⊥AC,因?yàn)槠矫鍼AC⊥平面AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論