2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山西省臨汾一中、翼城中學(xué)、曲沃中學(xué)等學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值是()A. B. C. D.2.我國古代名著《九章算術(shù)》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤,斬末一尺,重二斤.”意思是:“現(xiàn)有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤”,若該金錘從頭到尾,每一尺的重量構(gòu)成等差數(shù)列,該金錘共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.4.“”是“函數(shù)的圖像關(guān)于直線對稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要5.若則一定有()A. B. C. D.6.設(shè)向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件7.若關(guān)于的不等式的解集為,則的取值范圍是()A. B. C. D.8.函數(shù),則命題正確的()A.是周期為1的奇函數(shù) B.是周期為2的偶函數(shù)C.是周期為1的非奇非偶函數(shù) D.是周期為2的非奇非偶函數(shù)9.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形10.在投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬二、填空題:本大題共6小題,每小題5分,共30分。11.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)12.在正數(shù)數(shù)列an中,a1=1,且點an,an-113.已知關(guān)于兩個隨機變量的一組數(shù)據(jù)如下表所示,且成線性相關(guān),其回歸直線方程為,則當(dāng)變量時,變量的預(yù)測值應(yīng)該是_________.23456467101314.若為冪函數(shù),則滿足的的值為________.15.如圖為函數(shù)(,,,)的部分圖像,則函數(shù)解析式為________16.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點在底面上的射影為棱的中點,點在平面內(nèi)的射影為證明:為的中點:求三棱錐的體積18.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.設(shè)集合,,求.20.記為等差數(shù)列的前項和,已知,.(Ⅰ)求的通項公式;(Ⅱ)求,并求的最小值.21.某專賣店為了對新產(chǎn)品進行合理定價,將該產(chǎn)品按不同的單價試銷,調(diào)查統(tǒng)計如下表:售價(元)45678周銷量(件)9085837973(1)求周銷量y(件)關(guān)于售價x(元)的線性回歸方程;(2)按(1)中的線性關(guān)系,已知該產(chǎn)品的成本為2元/件,為了確保周利潤大于598元,則該店應(yīng)該將產(chǎn)品的售價定為多少?參考公式:,.參考數(shù)據(jù):,

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

令,再計算二次函數(shù)定區(qū)間上的最大值。【詳解】令則【點睛】本題考查利用換元法將計算三角函數(shù)的最值轉(zhuǎn)化為計算二次函數(shù)定區(qū)間上的最值。屬于基礎(chǔ)題。2、D【解析】

直接利用等差數(shù)列的求和公式求解即可.【詳解】因為每一尺的重量構(gòu)成等差數(shù)列,,,,數(shù)列的前5項和為.即金錘共重15斤,故選D.【點睛】本題主要考查等差數(shù)列求和公式的應(yīng)用,意在考查運用所學(xué)知識解答實際問題的能力,屬于基礎(chǔ)題.3、C【解析】

先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【詳解】由題得該幾何體是一個邊長為4的正方體挖去一個圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【點睛】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計算,意在考查學(xué)生對這些知識的理解掌握水平.4、A【解析】

根據(jù)充分必要條件的判定,即可得出結(jié)果.【詳解】當(dāng)時,是函數(shù)的對稱軸,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的充分條件,當(dāng)函數(shù)的圖像關(guān)于直線對稱時,,推不出,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的不必要條件,綜上選.【點睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對稱軸,屬于中檔題.5、D【解析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選6、C【解析】

利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.7、C【解析】

根據(jù)對數(shù)的性質(zhì)列不等式,根據(jù)一元二次不等式恒成立時,判別式和開口方向的要求列不等式組,解不等式組求得的取值范圍.【詳解】由得,即恒成立,由于時,在上不恒成立,故,解得.故選:C.【點睛】本小題主要考查對數(shù)函數(shù)的性質(zhì),考查一元二次不等式恒成立的條件,屬于基礎(chǔ)題.8、B【解析】由題得函數(shù)的周期為T==2,又f(x)=sin(πx?)?1=?cosπx?1,從而得出函數(shù)f(x)為偶函數(shù).故本題正確答案為B.9、D【解析】

用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.10、B【解析】

設(shè)生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應(yīng)作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標函數(shù)看成是一條直線,分析目標函數(shù)與直線截距的關(guān)系,進而求出最優(yōu)解.【詳解】設(shè)生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標函數(shù)為.由解得.使目標函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當(dāng)直線過點時截距最大.此時應(yīng)作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.

故選:B.【點睛】在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】

由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進行求解對于③④,可采用建系法進行分析【詳解】選項①如圖所示,當(dāng)時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時,取到最大值,,此時,由于,,,所以取不到答案選①、③【點睛】幾何體的旋轉(zhuǎn)問題需要結(jié)合動態(tài)圖形和立體幾何基本知識進行求解,需找臨界點是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進行求解.12、2【解析】

在正數(shù)數(shù)列an中,由點an,an-1在直線x-2y=0上,知a【詳解】由題意,在正數(shù)數(shù)列an中,a1=1,且a可得an-2即an因為a1=1,所以數(shù)列所以Sn故答案為2n【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的前n項和公式的應(yīng)用,同時涉及到數(shù)列與解析幾何的綜合運用,是一道好題.解題時要認真審題,仔細解答,注意等比數(shù)列的前n項和公式和通項公式的靈活運用,著重考查了推理與運算能力,屬于中檔試題.13、21.2【解析】

計算出,,可知回歸方程經(jīng)過樣本中心點,從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點,所以將,代入回歸直線方程中,得,所以當(dāng)時,.【點睛】本題主要考查回歸方程的相關(guān)計算,難度很小.14、【解析】

根據(jù)冪函數(shù)定義知,又,由二倍角公式即可求解.【詳解】因為為冪函數(shù),所以,即,因為,所以,即,因為,所以,.故填.【點睛】本題主要考查了冪函數(shù)的定義,正弦的二倍角公式,屬于中檔題.15、【解析】

由函數(shù)的部分圖像,先求得,得到,再由,得到,結(jié)合,求得,即可得到函數(shù)的解析式.【詳解】由題意,根據(jù)函數(shù)的部分圖像,可得,所以,又由,即,又由,即,解得,即,又因為,所以,所以.故答案為:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.16、【解析】

先利用同角三角函數(shù)的商數(shù)關(guān)系可得,再結(jié)合正弦定理及余弦定理化簡可得,然后求解即可.【詳解】解:因為,則,所以,即,所以,則,即,即即,故答案為:.【點睛】本題考查了同角三角函數(shù)的商數(shù)關(guān)系,重點考查了正弦定理及余弦定理的應(yīng)用,屬中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】

(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點.(2)根據(jù),即求出即可.【詳解】(1)證明:因為面,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(2)由題意平面【點睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎(chǔ)題.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、【解析】

首先求出集合,,再根據(jù)集合的運算求出即可.【詳解】因為的解為(舍去),所以,又因為的解為,所以,所以.【點睛】本題考查了集合的運算,對數(shù)與指數(shù)的運算,屬于基礎(chǔ)題.20、(1),(2),最小值為?1.【解析】

(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項公式為.(II)由(I)得.所以當(dāng)n=4時,取得最小值,最小值為?1.【點睛】本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項的和公式,考查了等差數(shù)列前n項和的最值問題;求等差數(shù)列前n項和的最值有兩種方法:①函數(shù)法,②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論