




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.2.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④3.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.845.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象6.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.若函數(shù)(其中,圖象的一個(gè)對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長度 B.向左平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度8.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.9.設(shè),滿足約束條件,則的最大值是()A. B. C. D.10.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.11.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.12.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數(shù)列,且,,則__________,的最大值為__________.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.已知雙曲線()的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),點(diǎn)為雙曲線右支上一點(diǎn),若,,則雙曲線的離心率的取值范圍為_____.16.已知函數(shù),若對于任意正實(shí)數(shù),均存在以為三邊邊長的三角形,則實(shí)數(shù)k的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.20.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.21.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.22.(10分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.2、B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).3、D【解析】
采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題4、B【解析】
畫出幾何體的直觀圖,計(jì)算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.5、D【解析】
利用輔助角公式化簡函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對稱軸,錯(cuò)誤C選項(xiàng),,不是對稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對稱軸,對稱中心,平移,意在考查學(xué)生對于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡三角函數(shù)是解題的關(guān)鍵.6、D【解析】
將函數(shù)的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問題,畫出函數(shù)的圖象,易知直線過定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問題,曲線的切線問題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.7、B【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.8、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)椋谏蠟闇p函數(shù).A選項(xiàng),的定義域?yàn)椋谏蠟樵龊瘮?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)椋环?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.9、D【解析】
作出不等式對應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.10、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.11、D【解析】
求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.12、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】,即的最大值為14、【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關(guān)于的式子,再令,則,令對函數(shù)求導(dǎo)研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關(guān)于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關(guān)于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設(shè),則,令,所以時(shí),,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查求雙曲線的離心率的范圍的問題,關(guān)鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關(guān),從而將離心率表示關(guān)于某個(gè)量的函數(shù),屬于中檔題.16、【解析】
根據(jù)三角形三邊關(guān)系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個(gè)式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進(jìn)而求出的取值范圍.【詳解】因?yàn)閷θ我庹龑?shí)數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當(dāng),即時(shí),該函數(shù)在上單調(diào)遞減,則;當(dāng),即時(shí),,當(dāng),即時(shí),該函數(shù)在上單調(diào)遞增,則,所以,當(dāng)時(shí),因?yàn)?,所以,解得;當(dāng)時(shí),,滿足條件;當(dāng)時(shí),,且,所以,解得,綜上,,故答案為:【點(diǎn)睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當(dāng)x∈(-∞,a]時(shí),|x-2a|-|x-a|≤-a,[f(x)]max因?yàn)閨y+2020|+|y-a|≥|a+2020|,所以當(dāng)(y+2020)(y-a)≤0時(shí),[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).【點(diǎn)睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應(yīng)用問題,以及絕對值三角不等式的應(yīng)用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應(yīng)用問題,關(guān)鍵是等價(jià)轉(zhuǎn)化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.18、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時(shí),,∴成立.當(dāng)時(shí),,,∴.當(dāng)時(shí),,,∴,即.綜上.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識(shí)的理解掌握水平和分析推理能力.19、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因?yàn)榍€和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.20、(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點(diǎn),連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點(diǎn),可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點(diǎn),連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個(gè)法向量,∵,則直線與平面所成角的正弦值為.點(diǎn)睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個(gè)平面過另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直.21、(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 32151.40-2025溫室氣體排放核算與報(bào)告要求第40部分:建筑防水材料生產(chǎn)企業(yè)
- 【正版授權(quán)】 ISO/IEC 27013:2021/AMD1:2024 EN Information security,cybersecurity and privacy protection - Guidance on the integrated implementation of ISO/IEC 27001 and ISO/IEC 20000-1 -
- 標(biāo)準(zhǔn)技術(shù)服務(wù)合同書
- 生產(chǎn)工藝承包經(jīng)營合同
- 股權(quán)轉(zhuǎn)讓協(xié)議書投資協(xié)議書
- 戶外活動(dòng)合作協(xié)議新
- 美妝店鋪委托經(jīng)營合同(3篇)
- 住宅房買賣合同書
- 墊資工程協(xié)議合同共
- 教育行業(yè)課外活動(dòng)安全免責(zé)協(xié)議
- 山東萊陽核電項(xiàng)目一期工程水土保持方案
- 新生兒的護(hù)理 新生兒科課件
- DB32/T 2283-2024 公路工程水泥攪拌樁成樁質(zhì)量檢測規(guī)程
- 費(fèi)曼學(xué)習(xí)法,世界公認(rèn)最好的學(xué)習(xí)方法
- 護(hù)理操作-吸痰
- 重癥肺炎的基本知識(shí)宣教
- 醫(yī)保社保停止申請書
- 人教版新起點(diǎn)小學(xué)英語二年級下冊教案-全冊
- 醫(yī)院護(hù)理帶教老師競聘課件
- DB23T 3539-2023 金屬非金屬礦山采掘施工企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化評定規(guī)范
- 姜曉龍-麥田除草劑愛秀的開發(fā)-先正達(dá)
評論
0/150
提交評論