四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題含解析_第1頁
四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題含解析_第2頁
四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題含解析_第3頁
四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題含解析_第4頁
四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省內(nèi)江市隆昌市2025屆九上數(shù)學期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.一個扇形的半徑為4,弧長為,其圓心角度數(shù)是()A. B. C. D.2.某超市一月份的營業(yè)額為36萬元,三月份的營業(yè)額為48萬元,設每月的平均增長率為x,則可列方程為()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=483.用公式法解一元二次方程時,化方程為一般式當中的依次為()A. B. C. D.4.下列運算中,計算結果正確的是()A.a(chǎn)4?a=a4 B.a(chǎn)6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b5.下列方程中是關于的一元二次方程的是()A. B. C. D.6.如圖,在菱形中,已知,,以為直徑的與菱形相交,則圖中陰影部分的面積為()A. B. C. D.7.如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點,ON=6,把△OMN沿MN折疊,點O落在點C處,MC與OB交于點P,若MN=MP=5,則PN=()A.2 B.3 C. D.8.若點在反比例函數(shù)的圖象上,則關于的二次方程的根的情況是().A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法確定9.如圖,點D,E分別在△ABC的AB,AC邊上,增加下列哪些條件,①∠AED=∠B,②,③,使△ADE與△ACB一定相似()A.①② B.② C.①③ D.①②③10.如圖,在△ABC中,點D,E分別在AB,AC邊上,且DE∥BC,若AD:DB=3:2,AE=6,則EC等于()A.10 B.4 C.15 D.9二、填空題(每小題3分,共24分)11.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數(shù)為_____度.12.如圖,拋物線與直線的兩個交點坐標分別為,則關于x的方程的解為________.13.點(2,3)關于原點對稱的點的坐標是_____.14.如圖,圓是銳角的外接圓,是弧的中點,交于點,的平分線交于點,過點的切線交的延長線于點,連接,則有下列結論:①點是的重心;②;③;④,其中正確結論的序號是__________.15.如圖,正方形的邊長為,在邊上分別取點,,在邊上分別取點,使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.16.一元二次方程x2﹣5x=0的兩根為_________.17.如圖,將Rt△ABC繞直角頂點C順時針旋轉90°,得到△A′B′C,連結AA′,若∠1=20°,則∠B=_____度.18.超市經(jīng)銷一種水果,每千克盈利10元,每天銷售500千克,經(jīng)市場調(diào)查,若每千克漲價1元,日銷售量減少20千克,現(xiàn)超市要保證每天盈利6000元,每千克應漲價為______元.三、解答題(共66分)19.(10分)中國經(jīng)濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學參加“國防知識”比賽,其預賽成績?nèi)鐖D所示:(1)根據(jù)上圖填寫下表:平均數(shù)中位數(shù)眾數(shù)方差甲班8.58.5乙班8.5101.6(2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個班的成績較好.20.(6分)如圖,在△ABC中,D為AC上一點,E為CB延長線上一點,且,DG∥AB,求證:DF=BG.21.(6分)如圖,已知直線y=﹣2x+4分別交x軸、y軸于點A、B,拋物線y=﹣2x2+bx+c過A,B兩點,點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D,拋物線的頂點為M,其對稱軸交AB于點N.(1)求拋物線的表達式及點M、N的坐標;(2)是否存在點P,使四邊形MNPD為平行四邊形?若存在求出點P的坐標,若不存在,請說明理由.22.(8分)如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E.(1)求證:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.23.(8分)如圖,頂點為P(2,﹣4)的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過原點,點A(m,n)在該函數(shù)圖象上,連接AP、OP.(1)求二次函數(shù)y=ax2+bx+c的表達式;(2)若∠APO=90°,求點A的坐標;(3)若點A關于拋物線的對稱軸的對稱點為C,點A關于y軸的對稱點為D,設拋物線與x軸的另一交點為B,請解答下列問題:①當m≠4時,試判斷四邊形OBCD的形狀并說明理由;②當n<0時,若四邊形OBCD的面積為12,求點A的坐標.24.(8分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經(jīng)過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.25.(10分)如圖,是直徑AB所對的半圓弧,點P是與直徑AB所圍成圖形的外部的一個定點,AB=8cm,點C是上一動點,連接PC交AB于點D.小明根據(jù)學習函數(shù)的經(jīng)驗,對線段AD,CD,PD,進行了研究,設A,D兩點間的距離為xcm,C,D兩點間的距離為cm,P,D兩點之間的距離為cm.小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù),隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(2)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,與x的幾組對應值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65補充表格;(說明:補全表格時,相關數(shù)值保留兩位小數(shù))(2)在同一平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,并畫出函數(shù)的圖象:(3)結合函數(shù)圖象解決問題:當AD=2PD時,AD的長度約為___________.26.(10分)“道路千萬條,安全第一條”,《中華人民共和國道路交通管理條例》規(guī)定:“小汽車在城市街道上的行駛速度不得超過”,一輛小汽車在一條城市街道上由西向東行駛,在據(jù)路邊處有“車速檢測儀”,測得該車從北偏西的點行駛到北偏西的點,所用時間為.(1)試求該車從點到點的平均速度(結果保留根號);(2)試說明該車是否超速.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)弧長公式即可求出圓心角的度數(shù).【詳解】解:∵扇形的半徑為4,弧長為,∴解得:,即其圓心角度數(shù)是故選C.【點睛】此題考查的是根據(jù)弧長和半徑求圓心角的度數(shù),掌握弧長公式是解決此題的關鍵.2、D【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設教育經(jīng)費的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】∵某超市一月份的營業(yè)額為36萬元,每月的平均增長率為x,∴二月份的營業(yè)額為36(1+x),三月份的營業(yè)額為36(1+x)×(1+x)=36(1+x)2.∴根據(jù)三月份的營業(yè)額為48萬元,可列方程為36(1+x)2=48.故選D.【點睛】本題考查了一元二次方程的應用,找到關鍵描述語,就能找到等量關系,是解決問題的關鍵.同時要注意增長率問題的一般規(guī)律.3、B【分析】先整理成一般式,然后根據(jù)定義找出即可.【詳解】方程化為一般形式為:,.故選:.【點睛】題考查了一元二次方程的一般形式,一元二次方程的一般形式為ax2+bx+c=0(a≠0).其中a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.4、C【分析】根據(jù)冪的運算法則即可判斷.【詳解】A、a4?a=a5,故此選項錯誤;B、a6÷a3=a3,故此選項錯誤;C、(a3)2=a6,正確;D、(ab)3=a3b3,故此選項錯誤;故選C.【點睛】此題主要考查冪的運算,解題的關鍵是熟知冪的運算公式.5、C【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是整式方程,故本選項錯誤;B、當=0時,方程就不是一元二次方程,故本選項錯誤;C、由原方程,得,符合一元二次方程的要求,故本選項正確;D、方程中含有兩個未知數(shù),故本選項錯誤.故選C.【點睛】此題考查的是一元二次方程的判斷,掌握一元二次方程的定義是解決此題的關鍵.6、D【分析】根據(jù)菱形與的圓的對稱性到△AOE為等邊三角形,故可利用扇形AOE的面積減去△AOE的面積得到需要割補的面積,再利用圓的面積減去4倍的需要割去的面積即可求解.【詳解】∵菱形中,已知,,連接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE為等邊三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴圖中陰影部分的面積=×22-4(-)=故選D.【點睛】本題考查的是扇形面積計算、菱形的性質(zhì),掌握扇形面積公式是解題的關鍵.7、D【分析】根據(jù)等邊對等角,得出∠MNP=∠MPN,由外角的性質(zhì)和折疊的性質(zhì),進一步證明△CPN∽△CNM,通過三角形相似對應邊成比例計算出CP,再次利用相似比即可計算出結果.【詳解】解:∵MN=MP,∴∠MNP=∠MPN,∴∠CPN=∠ONM,由折疊可得,∠ONM=∠CNM,CN=ON=6,∴∠CPN=∠CNM,又∵∠C=∠C,∴△CPN∽△CNM,,即CN2=CP×CM,∴62=CP×(CP+5),解得:CP=4,又∵,∴,∴PN=,故選:D.【點睛】本題考查了等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定和性質(zhì)是解題的關鍵.8、A【分析】將點P的坐標代入反比例函數(shù)的表達式中求出k的值,進而得出一元二次方程,根據(jù)根的判別式進行判斷即可.【詳解】∵點在反比例函數(shù)的圖象上,∴,即,∴關于的二次方程為,∵,∴方程有兩個不相等的實數(shù)根,故選A.【點睛】本題考查利用待定系數(shù)法求解反比例函數(shù)的表達式,根的判別式,熟練掌握根的判別式是解題的關鍵.9、C【分析】根據(jù)相似三角形的判定方法即可一一判斷;【詳解】解:∵∠A=∠A,∠AED=∠B,

∴△AED∽△ABC,故①正確,

∵∠A=∠A,,

∴△AED∽△ABC,故③正確,

由②無法判定△ADE與△ACB相似,

故選C.【點睛】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.10、B【解析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【詳解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故選:B.【點睛】考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為1.【點睛】此題考查旋轉的性質(zhì),即圖形旋轉后與原圖形全等.12、【詳解】∵拋物線與直線的兩個交點坐標分別為,∴方程組的解為,,即關于x的方程的解為.13、(-2,-3).【解析】根據(jù)“關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”可知:點P(2,3)關于原點對稱的點的坐標是(?2,?3).故答案為(-2,-3).14、②④【分析】根據(jù)三角形重心的定義,即可判斷①;連接OD,根據(jù)垂徑定理和切線的性質(zhì)定理,即可判斷②;由∠ACD=∠BAD,∠CAF=∠BAF,得∠AFD=∠FAD,若,可得∠EAF=∠ADF=∠BAC,進而得,即可判斷③;易證?ACD~?EAD,從而得,結合DF=DA,即可判斷④.【詳解】∵是弧的中點,∴∠ACD=∠BCD,即:CD是∠ACB的平分線,又∵AF是的平分線,∴點F不是的重心,∴①不符合題意,連接OD,∵是弧的中點,∴OD⊥AB,∵PD與圓相切,∴OD⊥PD,∴,∴②符合題意,∵是弧的中點,∴∠ACD=∠BAD,∵AF是的平分線,∴∠CAF=∠BAF,∴∠CAF+∠ACD=∠BAF+∠BAD,即:∠AFD=∠FAD,若,則∠AFD=∠AEF,∴∠AFD=∠AEF=∠FAD,∴∠EAF=∠ADF=∠BAC,∴.即:只有當時,才有.∴③不符合題意,∵∠ACD=∠BAD,∠D=∠D,∴?ACD~?EAD,∴,又∵∠AFD=∠FAD,∴DF=DA,∴,∴④符合題意.故答案是:②④.【點睛】本題主要考查圓的性質(zhì)與相似三角形的綜合,掌握垂徑定理,圓周角定理以及相似三角形的判定與性質(zhì)定理,是解題的關鍵.15、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2【點睛】本題考查正方形的性質(zhì)及勾股定理,正確計算各正方形的面積并得出規(guī)律是解題關鍵.16、0或5【解析】分析:本題考查的是一元二次方程的解法——因式分解法.解析:故答案為0或5.17、1【分析】由題意先根據(jù)旋轉的性質(zhì)得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,則可判斷△CAA′為等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性質(zhì)計算出∠CB′A′,從而得到∠B的度數(shù).【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′為等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案為:1.【點睛】本題考查旋轉的性質(zhì),注意掌握對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.18、5或1【分析】設每千克水果應漲價x元,得出日銷售量將減少20x千克,再由盈利額=每千克盈利×日銷售量,依題意得方程求解即可.【詳解】解:設每千克水果應漲價x元,依題意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解這個方程,得x1=5,x2=1.答:每千克水果應漲價5元或1元.故答案為:5或1.【點睛】本題考查了一元二次方程的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.三、解答題(共66分)19、(1);(2)答案見解析【分析】(1)根據(jù)“中位數(shù)”、“眾數(shù)”的定義及“方差”的計算公式結合統(tǒng)計圖中的數(shù)據(jù)進行分析計算即可;(2)按照題中要求,分別根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的意義進行說明即可.【詳解】解:(1)甲的眾數(shù)為:,方差為:,乙的中位數(shù)是:8;故答案為;(2)從平均數(shù)看,兩班平均數(shù)相同,則甲、乙兩班的成績一樣好;從中位數(shù)看,甲班的中位數(shù)大,所以甲班的成績較好;從眾數(shù)看,乙班的眾數(shù)大,所以乙班的成績較好;從方差看,甲班的方差小,所以甲班的成績更穩(wěn)定.【點睛】理解“平均數(shù)、中位數(shù)、眾數(shù)、方差的意義和計算方法”是正確解答本題的關鍵.20、詳見解析【分析】證明△DFH∽△EBH,證出DF‖BC,可證出四邊形BGDF平行四邊形,則DF=BG.【詳解】證明:∵DG∥AB,∴,∵,∴,∵∠EHB=∠DHF,∴△DFH∽△EBH,∴∠E=∠FDH,∴DF//BC,∴四邊形BGDF平行四邊形,∴DF=BG.【點睛】本題考查了相似三角形的判定與性質(zhì),平行線分線段成比例定理,平行四邊形的判定與性質(zhì)等知識,解題的關鍵是熟練掌握相似三角形的判定與性質(zhì).21、(1)y=﹣2x2+2x+4,M,N,(2)存在,P.【分析】(1)先由直線解析式求出A,B的坐標,再利用待定系數(shù)法可求出拋物線解析式,可進一步化為頂點式即可寫出頂點M的坐標并求出點N坐標;(2)先求出MN的長度,設點P的坐標為(m,﹣2m+4),用含m的代數(shù)式表示點D坐標,并表示出PD的長度,當PD=MN時,列出關于m的方程,即可求出點P的坐標.【詳解】(1)∵直線y=﹣2x+4分別交x軸,y軸于點A,B,∴A(2,0),B(0,4),把點A(2,0),B(0,4)代入y=﹣2x2+bx+c,得,解得,,∴拋物線的解析式為:y=﹣2x2+2x+4=﹣2(x﹣)2+,∴頂點M的坐標為(,),當x=時,y=﹣2×+4=3,則點N坐標為(,3);(2)存在點P,理由如下:MN=﹣3=,設點P的坐標為(m,﹣2m+4),則D(m,﹣2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∵PD∥MN,∴當PD=MN時,四邊形MNPD為平行四邊形,即﹣2m2+4m=,解得,m1=,m2=(舍去),∴此時P點坐標為(,1).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式,平行四邊形的存在性等,解題關鍵是要熟練掌握平行四邊形的性質(zhì)并能夠靈活運用.22、(1)證明見解析(2)2【解析】試題分析:由角平分線得出,得出,由圓周角定理得出證出再由三角形的外角性質(zhì)得出即可得出由得:,得出由圓周角定理得出是直徑,由勾股定理求出即可得出外接圓的半徑.試題解析:(1)證明:平分又平分連接,是直徑.平分∴半徑為23、(1)y=x2﹣4x;(2)A(,﹣);(3)①平行四邊形,理由見解析;②A(1,﹣3)或A(3,﹣3).【分析】(1)由已知可得拋物線與x軸另一個交點(4,0),將(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx+c即可求表達式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=,即可求A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四邊形OBCD是平行四邊形;②四邊形由OBCD是平行四邊形,,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【詳解】解:(1)∵圖象經(jīng)過原點,∴c=0,∵頂點為P(2,﹣4)∴拋物線與x軸另一個交點(4,0),將(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函數(shù)的解析式為y=x2﹣4x;(2)∵∠APO=90°,∴AP⊥PO,∵A(m,m2﹣4m),∴m﹣2=,∴m=,∴A(,﹣);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),∴CD∥OB,∵CD=4,OB=4,∴四邊形OBCD是平行四邊形;②∵四邊形OBCD是平行四邊形,,∴12=4×(﹣n),∴n=﹣3,∴A(1,﹣3)或A(3,﹣3).【點睛】本題考查了二次函數(shù)與幾何綜合問題,涉及二次函數(shù)求解析式、直角三角形、平行四邊形等知識點,解題的關鍵是靈活運用上述知識點進行推導求解.24、(1)見解析;(2)圖②:EF=AE+CF圖③:EF=AE-CF,見解析【分析】(1)連接OC,運用AAS證△AOE≌△OCF即可;(2)按(1)中的方法,連接OC,證明△AOE≌△OCF,即可得出結論【詳解】(1)連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論