




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省豐寧縣2025屆九上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,已知⊙O中,半徑OC垂直于弦AB,垂足為D,若OD=3,OA=5,則AB的長為()A.2 B.4 C.6 D.82.若反比例函數(shù)的圖象分布在二、四象限,則關(guān)于x的方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.只有一個實數(shù)根3.如圖,在△ABC中,點D、E分別是AB、AC的中點,若△ADE的面積為4,則△ABC的面積為()A.8 B.12 C.14 D.164.對于二次函數(shù),下列說法不正確的是()A.其圖象的對稱軸為過且平行于軸的直線.B.其最小值為1.C.其圖象與軸沒有交點.D.當(dāng)時,隨的增大而增大.5.下列一元二次方程中有兩個不相等的實數(shù)根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=06.在0,1,2三個數(shù)中任取兩個,組成兩位數(shù),則在組成的兩位數(shù)中是奇數(shù)的概率為()A. B. C. D.7.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定8.下列說法中錯誤的是()A.成中心對稱的兩個圖形全等B.成中心對稱的兩個圖形中,對稱點的連線被對稱軸平分C.中心對稱圖形的對稱中心是對稱點連線的中心D.中心對稱圖形繞對稱中心旋轉(zhuǎn)180°后,都能與自身重合9.對于問題:如圖1,已知∠AOB,只用直尺和圓規(guī)判斷∠AOB是否為直角?小意同學(xué)的方法如圖2:在OA、OB上分別取C、D,以點C為圓心,CD長為半徑畫弧,交OB的反向延長線于點E,若測量得OE=OD,則∠AOB=90o.則小意同學(xué)判斷的依據(jù)是()A.等角對等邊 B.線段中垂線上的點到線段兩段距離相等C.垂線段最短 D.等腰三角形“三線合一”10.如圖是二次函數(shù)的部分圖象,則的解的情況為()A.有唯一解 B.有兩個解 C.無解 D.無法確定二、填空題(每小題3分,共24分)11.從一副沒有“大小王”的撲克牌中隨機抽取一張,點數(shù)為“”的概率是________.12.半徑為4的圓中,長為4的弦所對的圓周角的度數(shù)是_________.13.已知:在⊙O中,直徑AB=4,點P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長為_____.14.若點與點關(guān)于原點對稱,則______.15.已知a=3+2,b=3-2,則a2b+ab2=_________.16.如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標(biāo)為(3,4),則點F的坐標(biāo)是_____.17.某縣為做大旅游產(chǎn)業(yè),在2018年投入資金3.2億元,預(yù)計2020年投入資金6億元,設(shè)旅游產(chǎn)業(yè)投資的年平均增長率為,則可列方程為____.18.已知函數(shù)(為常數(shù)),若從中任取值,則得到的函數(shù)是具有性質(zhì)“隨增加而減小”的一次函數(shù)的概率為___________.三、解答題(共66分)19.(10分)對于實數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,﹣1}=﹣1,min{1,1}=1.類似地,若函數(shù)y1、y1都是x的函數(shù),則y=min{y1,y1}表示函數(shù)y1和y1的“取小函數(shù)”.(1)設(shè)y1=x,y1=,則函數(shù)y=min{x,}的圖象應(yīng)該是中的實線部分.(1)請在圖1中用粗實線描出函數(shù)y=min{(x﹣1)1,(x+1)1}的圖象,并寫出該圖象的三條不同性質(zhì):①;②;③;(3)函數(shù)y=min{(x﹣4)1,(x+1)1}的圖象關(guān)于對稱.20.(6分)解方程:(1);(2).21.(6分)如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.(1)如圖1,當(dāng)點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關(guān)系;(2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;(3)如圖3,當(dāng)點M、N分別在CB、DC的延長線上時,若CN=CD=6,設(shè)BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.22.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當(dāng)點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)23.(8分)課本上有如下兩個命題:命題1:圓的內(nèi)接四邊形的對角互補.命題2:如果一個四邊形兩組對角互補,那么該四邊形的四個頂點在同一個圓上.請判斷這兩個命題的真、假?并選擇其中一個說明理由.24.(8分)如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,3)它的對稱軸是直線(1)求拋物線的解析式;(2)M是線段AB上的任意一點,當(dāng)△MBC為等腰三角形時,求M點的坐標(biāo).25.(10分)如圖,在?ABCD中過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.(1)求證:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的長.26.(10分)某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃垂直于墻的一邊長為x米.(1)若苗圃的面積為72平方米,求x的值;(2)這個苗圃的面積能否是120平方米?請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】利用垂徑定理和勾股定理計算.【詳解】根據(jù)勾股定理得,根據(jù)垂徑定理得AB=2AD=8故選:D.【點睛】考查勾股定理和垂徑定理,熟練掌握垂徑定理是解題的關(guān)鍵.2、A【分析】反比例函數(shù)的圖象分布在二、四象限,則k小于0,再根據(jù)根的判別式判斷根的情況.【詳解】∵反比例函數(shù)的圖象分布在二、四象限∴k<0則則方程有兩個不相等的實數(shù)根故答案為:A.【點睛】本題考查了一元二次方程方程根的情況,務(wù)必清楚時,方程有兩個不相等的實數(shù)根;時,方程有兩個相等的實數(shù)根;時,方程沒有實數(shù)根.3、D【分析】直接利用三角形中位線定理得出DE∥BC,DE=BC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】解:∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴,∵△ADE的面積為4,∴△ABC的面積為:16,故選D.【點睛】考查了三角形的中位線以及相似三角形的判定與性質(zhì),正確得出△ADE∽△ABC是解題關(guān)鍵.4、D【分析】先將二次函數(shù)變形為頂點式,然后可根據(jù)二次函數(shù)的性質(zhì)判斷A、B、D三項,再根據(jù)拋物線的頂點和開口即可判斷C項,進(jìn)而可得答案.【詳解】解:,所以拋物線的對稱軸是直線:x=3,頂點坐標(biāo)是(3,1);A、其圖象的對稱軸為過且平行于軸的直線,說法正確,本選項不符合題意;B、其最小值為1,說法正確,本選項不符合題意;C、因為拋物線的頂點是(3,1),開口向上,所以其圖象與軸沒有交點,說法正確,本選項不符合題意;D、當(dāng)時,隨的增大而增大,說法錯誤,所以本選項符合題意.故選:D.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),屬于基本題型,熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.5、C【分析】根據(jù)一元二次方程根的判別式,分別計算△的值,進(jìn)行判斷即可.【詳解】解:選項A:△=0,方程有兩個相等的實數(shù)根;選項B、△=0-12=-12<0,方程沒有實數(shù)根;選項C、△=4-4×1×(-17)=4+68=72>0,方程有兩個不相等的實數(shù)根;選項D、△=1-4×5=-19<0,方程沒有實數(shù)根.故選:C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac;當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.6、A【分析】列舉出所有情況,看兩位數(shù)中是奇數(shù)的情況占總情況的多少即可.【詳解】解:在0,1,2三個數(shù)中任取兩個,組成兩位數(shù)有:12,10,21,20四個,是奇數(shù)只有21,所以組成的兩位數(shù)中是奇數(shù)的概率為.故選A.【點睛】數(shù)目較少,可用列舉法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、B【解析】試題分析:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱中心對稱,中心對稱圖形的對稱中心是對稱點連線的交點,根據(jù)中心對稱圖形的定義和性質(zhì)可知A、C、D正確,B錯誤.故選B.考點:中心對稱.9、B【分析】由垂直平分線的判定定理,即可得到答案.【詳解】解:根據(jù)題意,∵CD=CE,OE=OD,∴AO是線段DE的垂直平分線,∴∠AOB=90°;則小意同學(xué)判斷的依據(jù)是:線段中垂線上的點到線段兩段距離相等;故選:B.【點睛】本題考查了垂直平分線的判定定理,解題的關(guān)鍵是熟練掌握垂直平分線的判定定理進(jìn)行判斷.10、C【分析】根據(jù)圖象可知拋物線頂點的縱坐標(biāo)為-3,把方程轉(zhuǎn)化為,利用數(shù)形結(jié)合求解即可.【詳解】根據(jù)圖象可知拋物線頂點的縱坐標(biāo)為-3,把轉(zhuǎn)化為拋物線開口向下有最小值為-3∴(-3)>(-4)即方程與拋物線沒有交點.即方程無解.故選C.【點睛】本題考查了數(shù)形結(jié)合的思想,由題意知道拋物線的最小值為-3是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】讓點數(shù)為6的撲克牌的張數(shù)除以沒有大小王的撲克牌總張數(shù)即為所求的概率.【詳解】∵沒有大小王的撲克牌共52張,其中點數(shù)為6的撲克牌4張,
∴隨機抽取一張點數(shù)為6的撲克,其概率是
故答案為【點睛】本題考查的是隨機事件概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.12、或【分析】首先根據(jù)題意畫出圖形,然后在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,易得是等邊三角形,再利用圓周角定理,即可得出答案.【詳解】.如圖所示在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,∵,∴∴是等邊三角形∴∴∴∴所對的圓周角的度數(shù)為或故答案為:或.【點睛】本題考查了圓周角的問題,掌握圓周角定理是解題的關(guān)鍵.13、2或1【分析】當(dāng)點P和Q在AB的同側(cè),如圖1,連接OP、OQ、PQ,先計算出∠PAQ=30°,根據(jù)圓周角定理得到∠POQ=60°,則可判斷△OPQ為等邊三角形,從而得到PQ=OP=2;當(dāng)點P和Q在AB的同側(cè),如圖1,連接PQ,先計算出∠PAQ=90°,根據(jù)圓周角定理得到PQ為直徑,從而得到PQ=1.【詳解】解:當(dāng)點P和Q在AB的同側(cè),如圖1,連接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ為等邊三角形,∴PQ=OP=2;當(dāng)點P和Q在AB的同側(cè),如圖1,連接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ為直徑,∴PQ=1,綜上所述,PQ的長為2或1.故答案為2或1.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.14、1【解析】∵點P(m,﹣2)與點Q(3,n)關(guān)于原點對稱,∴m=﹣3,n=2,則(m+n)2018=(﹣3+2)2018=1,故答案為1.15、6【解析】仔細(xì)觀察題目,先對待求式提取公因式化簡得ab(a+b),將a=3+2,b=3-2,代入運算即可.【詳解】解:待求式提取公因式,得將已知代入,得故答案為6.【點睛】考查代數(shù)式求值,熟練掌握提取公因式法是解題的關(guān)鍵.16、(6,).【分析】過點D作DM⊥OB,垂足為M,先根據(jù)勾股定理求出菱形的邊長,即可得到點B、D的坐標(biāo),進(jìn)而可根據(jù)菱形的性質(zhì)求得點A的坐標(biāo),進(jìn)一步即可求出反比例函數(shù)的解析式,再利用待定系數(shù)法求出直線BC的解析式,然后解由直線BC和反比例函數(shù)的解析式組成的方程組即可求出答案.【詳解】解:過點D作DM⊥OB,垂足為M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四邊形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的對角線交點,∴A(4,2),代入y=,得:k=8,∴反比例函數(shù)的關(guān)系式為:y=,設(shè)直線BC的關(guān)系式為y=kx+b,將B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直線BC的關(guān)系式為y=x﹣,將反比例函數(shù)與直線BC聯(lián)立方程組得:,解得:,(舍去),∴F(6,),故答案為:(6,).【點睛】本題考查了菱形的性質(zhì)、勾股定理、待定系數(shù)法求函數(shù)的解析式以及求兩個函數(shù)的交點等知識,屬于??碱}型,正確作出輔助線、熟練掌握上述知識是解題的關(guān)鍵.17、【分析】根據(jù)題意,找出題目中的等量關(guān)系,列出一元二次方程即可.【詳解】解:根據(jù)題意,設(shè)旅游產(chǎn)業(yè)投資的年平均增長率為,則;故答案為:.【點睛】本題考查了一元二次方程的應(yīng)用——增長率問題,解題的關(guān)鍵是熟練掌握增長率問題的等量關(guān)系,正確列出一元二次方程.18、【分析】根據(jù)“隨增加而減小”可知,解出k的取值范圍,然后根據(jù)概率公式求解即可.【詳解】由“隨增加而減小”得,解得,∴具有性質(zhì)“隨增加而減小”的一次函數(shù)的概率為故答案為:.【點睛】本題考查了一次函數(shù)的增減性,以及概率的計算,熟練掌握一次函數(shù)增減性與系數(shù)的關(guān)系和概率公式是解題的關(guān)鍵.三、解答題(共66分)19、(2)B,(2)對稱軸為y軸;x<﹣2時y隨x的增大而減??;最小值為3;(3)x=2.【分析】(2)依據(jù)函數(shù)解析式,可得當(dāng)x≤-2時,x≤;當(dāng)-2<x<3時,x>;當(dāng)3<x<2時,x≤;當(dāng)x≥2時,x>;進(jìn)而得到函數(shù)y=min{x,}的圖象;(2)依據(jù)函數(shù)y=(x-2)2和y=(x+2)2的圖象與性質(zhì),即可得到函數(shù)y=min{(x-2)2,(x+2)2}的圖象及其性質(zhì);(3)令(x-4)2=(x+2)2,則x=2,進(jìn)而得到函數(shù)y=min{(x-4)2,(x+2)2}的圖象的對稱軸.【詳解】(2)當(dāng)x≤﹣2時,x≤;當(dāng)﹣2<x<3時,x>;當(dāng)3<x<2時,x≤;當(dāng)x≥2時,x>;∴函數(shù)y=min{x,}的圖象應(yīng)該是故選B;(2)函數(shù)y=min{(x﹣2)2,(x+2)2}的圖象如圖中粗實線所示:性質(zhì)為:對稱軸為y軸;x<﹣2時y隨x的增大而減?。蛔钚≈禐?.故答案為對稱軸為y軸;x<﹣2時y隨x的增大而減??;最小值為3;(3)令(x﹣4)2=(x+2)2,則x=2,故函數(shù)y=min{(x﹣4)2,(x+2)2}的圖象的對稱軸為:直線x=2.故答案為直線x=2.【點睛】本題主要考查的是反比例函數(shù)以及二次函數(shù)圖象與性質(zhì)的綜合應(yīng)用,本題通過列表、描點、連線畫出函數(shù)的圖象,然后找出其中的規(guī)律,通過畫圖發(fā)現(xiàn)函數(shù)圖象的特點是解題的關(guān)鍵.20、(1),;(2),.【分析】(1)先去括號,再利用直接開平方法解方程即可;(2)利用十字相乘法解方程即可.【詳解】(1),,,∴,.(2),(3x+2)(x-2)=0,∴,.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當(dāng)?shù)慕夥ㄊ墙忸}關(guān)鍵.21、(1)BM+DN=MN;(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由見解析;(3)AP=AM+PM=3.【分析】(1)在MB的延長線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,得到AE=AN,進(jìn)一步證明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;
(2)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,得出AM=AF,進(jìn)一步證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN;
(3)由已知得出DN=12,由勾股定理得出AN===6,由平行線得出△ABQ∽△NDQ,得出====,∴=,求出AQ=2;由(2)得出DN-BM=MN.設(shè)BM=x,則MN=12-x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==,由平行線得出△PBM∽△PDA,得出==,,求出PM=PM=AM=,得出AP=AM+PM=3.【詳解】(1)BM+DN=MN,理由如下:如圖1,在MB的延長線上,截取BE=DN,連接AE,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵M(jìn)E=BE+BM=BM+DN,∴BM+DN=MN;故答案為:BM+DN=MN;(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由如下:如圖2,在DC上截取DF=BM,連接AF,則∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四邊形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.設(shè)BM=x,則MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.【點睛】本題是四邊形的綜合題目,考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識;本題綜合性強,證明三角形全等和三角形相似是解題的關(guān)鍵.22、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D,G,F(xiàn)分別是AB,OB,OC的中點,∴,,當(dāng)AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.23、命題一、二均為真命題,證明見解析.【分析】利用圓周角定理可證明命題正確;利用反證法可證明命題2正確.【詳解】命題一、二均為真命題,命題1、命題2都是真命題.證明命題1:如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,連接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圓的內(nèi)接四邊形的對角互補.【點睛】本題考查了命題與定理:命題寫成“如果…,那么…”的形式,這時,“如果”后面接的部分是題設(shè),“那么”后面解的部分是結(jié)論.命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.24、(1)(2)M點坐標(biāo)為(0,0)或【解析】試題分析:(1)首先將拋物線的解析式設(shè)成頂點式,然后將A、C兩點坐標(biāo)代入進(jìn)行計算;(2)首先求出點B的坐標(biāo),然后分三種情況進(jìn)行計算.試題解析:(1)、依題意,設(shè)拋物線的解析式為y=a+k.由A(2,0),C(0,3)得解得∴拋物線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑鋼材期貨鎖價采購綠色節(jié)能合同
- 汽車廣告創(chuàng)意設(shè)計及營銷合同
- 寵物糞便處理責(zé)任保證協(xié)議(住宅小區(qū))
- 游戲虛擬貨幣發(fā)行與內(nèi)容版權(quán)保護(hù)協(xié)議
- 高空作業(yè)安全盤扣式腳手架租賃一體化服務(wù)合同
- 夫妻間電子設(shè)備使用規(guī)范及忠誠度保障協(xié)議書
- Web前端開發(fā)課件 項目一 HTML文檔結(jié)構(gòu)
- DB42-T 2005.2-2023 就業(yè)創(chuàng)業(yè)服務(wù) 第2部分:創(chuàng)業(yè)擔(dān)保貸款網(wǎng)辦服務(wù)規(guī)范
- 教師心理健康學(xué)習(xí)心得體會模版
- 2023年人教版四年級語文上冊八單元測試卷及答案2
- 《念奴嬌++過洞庭》教學(xué)設(shè)計++2024-2025學(xué)年統(tǒng)編版高一語文必修下冊
- 交通樞紐的安全管理事故預(yù)防與應(yīng)急處理策略
- 《浙江省中藥飲片炮制規(guī)范》 2015年版
- 第19課《紫藤蘿瀑布》課件-2024-2025學(xué)年統(tǒng)編版語文七年級下冊
- 主題班會AI時代中學(xué)生的機遇與成長
- 供電公司故障搶修服務(wù)規(guī)范
- 初中體育課堂安全教育
- 碼頭安全生產(chǎn)知識
- 全屋整裝培訓(xùn)
- 《風(fēng)電安全生產(chǎn)培訓(xùn)》課件
- 鑄就數(shù)字堅盾:網(wǎng)絡(luò)安全技術(shù)智慧樹知到課后章節(jié)答案2023年下青島工學(xué)院
評論
0/150
提交評論