版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在矩形中,在上,,交于,連結(jié),則圖中與一定相似的三角形是A. B. C. D.和2.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根3.用配方法解方程2x2-x-2=0,變形正確的是()A. B.=0 C. D.4.如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑,∠BAC=28o,則∠P的度數(shù)是()A.50o B.58oC.56o D.55o5.已知一元二次方程,則該方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.兩個根都是自然數(shù) D.無實數(shù)根6.如圖,在平面直角坐標系中,與軸相切,直線被截得的弦長為,若點的坐標為,則的值為()A. B. C. D.7.如圖,平行四邊形ABCD中,AC⊥AB,點E為BC邊中點,AD=6,則AE的長為()A.2 B.3 C.4 D.58.計算的結(jié)果是()A. B. C. D.9.如圖,切于兩點,切于點,交于.若的周長為,則的值為()A. B. C. D.10.下列事件中,是必然事件的是()A.擲一次骰子,向上一面的點數(shù)是6B.13個同學(xué)參加一個聚會,他們中至少有兩個同學(xué)的生日在同一個月C.射擊運動員射擊一次,命中靶心D.經(jīng)過有交通信號燈的路口,遇到紅燈二、填空題(每小題3分,共24分)11.如圖,,如果,那么_________________.12.對于兩個不相等的實數(shù)a、b,我們規(guī)定max{a、b}表示a、b中較大的數(shù),如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解為.13.如圖,扇形OAB,∠AOB=90,⊙P與OA、OB分別相切于點F、E,并且與弧AB切于點C,則扇形OAB的面積與⊙P的面積比是.14.二次函數(shù)y=a(x+m)2+n的圖象如圖,則一次函數(shù)y=mx+n的圖象不經(jīng)過第_____象限.15.已知點A(m,1)與點B(3,n)關(guān)于原點對稱,則m+n=_________。16.如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=1.給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正確的是(寫出所有正確結(jié)論的序號).17.將拋物線y=x2+2x向右平移1個單位后的解析式為_____.18.函數(shù)中,自變量的取值范圍是_____.三、解答題(共66分)19.(10分)如圖,在等腰三角形ABC中,于點H,點E是AH上一點,延長AH至點F,使.求證:四邊形EBFC是菱形.20.(6分)如圖,四邊形是平行四邊形,,,點為邊的中點,點在的延長線上,且.點在線段上,且,垂足為.(1)若,且,,求的長;(2)求證:.21.(6分)計算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°22.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分線,EF是BD的中垂線,且分別交BC于點E,交AB于點F,交BD于點K,連接DE,DF.(1)證明:DE//AB;(2)若CD=3,求四邊形BEDF的周長.23.(8分)如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是多少?(2)在飛行過程中,小球從飛出到落地所用時間是多少?(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?24.(8分)如圖,直線與雙曲線相交于點A,且,將直線向左平移一個單位后與雙曲線相交于點B,與x軸、y軸分別交于C、D兩點.(1)求直線的解析式及k的值;(2)連結(jié)、,求的面積.25.(10分)如圖,平面直角坐標系中,點、點在軸上(點在點的左側(cè)),點在第一象限,滿足為直角,且恰使∽△,拋物線經(jīng)過、、三點.(1)求線段、的長;(2)求點的坐標及該拋物線的函數(shù)關(guān)系式;(3)在軸上是否存在點,使為等腰三角形?若存在,求出所有符合條件的點的坐標,若不存在,請說明理由.26.(10分)如圖,四邊形OABC為矩形,OA=4,OC=5,正比例函數(shù)y=2x的圖像交AB于點D,連接DC,動點Q從D點出發(fā)沿DC向終點C運動,動點P從C點出發(fā)沿CO向終點O運動.兩點同時出發(fā),速度均為每秒1個單位,設(shè)從出發(fā)起運動了ts.(1)求點D的坐標;(2)若PQ∥OD,求此時t的值?(3)是否存在時刻某個t,使S△DOP=S△PCQ?若存在,請求出t的值,若不存在,請說明理由;(4)當t為何值時,△DPQ是以DQ為腰的等腰三角形?
參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質(zhì),相似三角形的判定點評:相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習,是中考中半徑常見的知識點,一般難度不大,需熟練掌握.2、D【詳解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.3、D【解析】用配方法解方程2?x?2=0過程如下:移項得:,二次項系數(shù)化為1得:,配方得:,即:.故選D.4、C【分析】利用切線長定理可得切線的性質(zhì)的PA=PB,,則,,再利用互余計算出,然后在根據(jù)三角形內(nèi)角和計算出的度數(shù).【詳解】解:∵PA,PB是⊙O的切線,A,B為切點,∴PA=PB,,∴在△ABP中∴故選:C.【點睛】本題主要考查了切線長定理以及切線的性質(zhì),熟練掌握切線長定理以及切線性質(zhì)是解題的關(guān)鍵.5、A【詳解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,熟記公式正確計算是解題關(guān)鍵,難度不大.6、B【分析】過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,根據(jù)切線的性質(zhì)得PC⊥y軸,則P點的橫坐標為4,所以E點坐標為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據(jù)垂徑定理由PH⊥AB得AH=,根據(jù)勾股定理可得PH=2,于是根據(jù)等腰直角三角形的性質(zhì)得PE=,則PD=,然后利用第一象限點的坐標特征寫出P點坐標.【詳解】解:過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,
∵⊙P與y軸相切于點C,
∴PC⊥y軸,
∴P點的橫坐標為4,
∴E點坐標為(4,4),
∴△EOD和△PEH都是等腰直角三角形,
∵PH⊥AB,
∴AH=,
在△PAH中,PH=,
∴PE=,
∴PD=,
∴P點坐標為(4,).故選:B【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了垂徑定理.7、B【解析】由平行四邊形得AD=BC,在Rt△BAC中,點E為BC邊中點,根據(jù)直角三角形的中線等于斜邊的一半即可求出AE.解:∵四邊形ABCD是平行四邊形,∴AD=BC=6,∵AC⊥AB,∴△BAC為Rt△BAC,∵點E為BC邊中點,∴AE=BC=.故選B.8、D【分析】根據(jù)同底數(shù)冪相乘的運算公式進行計算即可.【詳解】解:=故選:D.【點睛】本題考查同底數(shù)冪相乘的運算,熟練掌握運算公式是解題的關(guān)鍵.9、A【分析】利用切線長定理得出,然后再根據(jù)的周長即可求出PA的長.【詳解】∵切于兩點,切于點,交于∴的周長為∴故選:A.【點睛】本題主要考查切線長定理,掌握切線長定理是解題的關(guān)鍵.10、B【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,即發(fā)生的概率是1的事件.【詳解】解:A.擲一次骰子,向上一面的點數(shù)是6,屬于隨機事件;B.13個同學(xué)參加一個聚會,他們中至少有兩個同學(xué)的生日在同一個月,屬于必然事件;C.射擊運動員射擊一次,命中靶心,屬于隨機事件;D.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件;故選B.【點睛】此題主要考查事件發(fā)生的概率,解題的關(guān)鍵是熟知必然事件的定義.二、填空題(每小題3分,共24分)11、【分析】根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵,∴,即,解得:.故答案為:.【點睛】本題考查的是平行線分線段成比例定理,屬于基本題型,熟練掌握該定理是解題關(guān)鍵.12、【分析】直接分類討論得出x的取值范圍,進而解方程得出答案.【詳解】解:當1x>x﹣1時,故x>﹣1,則1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;當1x<x﹣1時,故x<﹣1,則x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合題意舍去),x4=﹣1(不合題意舍去),綜上所述:方程max{1x,x﹣1}=x1﹣4的解為:x1=1+,x1=1﹣.故答案為:x1=1+,x1=1﹣.【點睛】考核知識點:一元二次方程.理解規(guī)則定義是關(guān)鍵.13、【詳解】依題意連接OC則P在OC上,連接PF,PE則PF⊥OA,PE⊥OB,由切線長定理可知四邊形OEPF為正方形,且其邊長即⊙P的半徑(設(shè)⊙P的半徑為r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴14、一【分析】由二次函數(shù)解析式表示出頂點坐標,根據(jù)圖形得到頂點在第四象限,求出m與n的正負,即可作出判斷.【詳解】根據(jù)題意得:拋物線的頂點坐標為(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,則一次函數(shù)y=mx+n不經(jīng)過第一象限.故答案為:一.【點睛】此題考查了二次函數(shù)與一次函數(shù)圖象與系數(shù)的關(guān)系,熟練掌握二次函數(shù)及一次函數(shù)的圖象與性質(zhì)是解本題的關(guān)鍵.15、-1【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反,可直接得到m=-3,n=-1進而得到答案.【詳解】解:∵點A(m,1)與點B(3,n)關(guān)于原點對稱,
∴m=-3,n=-1,
∴m+n=-1,
故答案為:-1.【點睛】此題主要考查了關(guān)于原點對稱點的坐標特點,關(guān)鍵是掌握點的坐標的變化規(guī)律.16、①②④.【解析】①∵AB是⊙O的直徑,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正確;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正確;③∵AF=1,F(xiàn)G=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③錯誤;④∵DF=DG+FG=6,AD==,∴S△ADF=DF?AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正確.故答案為①②④.17、y=x2﹣1.【分析】通過配方法先求出原拋物線的頂點坐標,繼而得到平移后新拋物線的頂點坐標,然后利用頂點式即可求得新拋物線的解析式.【詳解】∵y=x2+2x=(x+1)2-1,∴原拋物線的頂點為(-1,-1),∵將拋物線y=x2+2x向右平移1個單位得到新的拋物線,∴新拋物線的頂點為(0,-1),∴新拋物線的解析式為y=x2-1,故答案為:y=x2-1.【點睛】本題考查了拋物線的平移,得到原拋物線與新拋物線的頂點坐標是解題的關(guān)鍵.18、【分析】根據(jù)被開方式是非負數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當函數(shù)解析式是整式時,字母可取全體實數(shù);②當函數(shù)解析式是分式時,考慮分式的分母不能為0;③當函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.三、解答題(共66分)19、見解析.【分析】根據(jù)等腰三角形的三線合一可得BH=HC,結(jié)合已知條件,從而得出四邊形EBFC是平行四邊形,再根據(jù)得出四邊形EBFC是菱形.【詳解】證明:,,∴四邊形EBFC是平行四邊形又,∴四邊形EBFC是菱形.【點睛】本題考查了菱形的判定和性質(zhì),以及等腰三角形的性質(zhì),熟練掌握相關(guān)的知識是解題的關(guān)鍵.20、(1);(2)證明見解析【分析】(1)由勾股定理求出BF,進而得出AE的長,再次利用勾股定理得出AB的長,最后根據(jù)平行四邊形的性質(zhì)與勾股定理求出AD的長;(2)設(shè),根據(jù)勾股定理求出CH的長,利用直角三角形斜邊上的中線是斜邊的一半得出EH的長,進而得出CE的長,根據(jù)得出,利用勾股定理求出BG,GH的長,根據(jù)求出BF,進而得證.【詳解】(1)解:∵,,且,,∴由勾股定理知,,∴,∴由勾股定理知,,∵四邊形是平行四邊形,,,∴由勾股定理知,;(2)證明:∵點為邊的中點,,設(shè),∴,由勾股定理知,,∵,∴是斜邊上的中線,∴,∴,∵,即,∵,∴,∴,即,∴,∴在中,,∴解得,,,∵易證,∴,即,∵,∴,∴,∴.【點睛】本題考查平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,直角三角形斜邊中線的性質(zhì)等,熟練掌握相似三角形的判定與勾股定理是解題的關(guān)鍵.21、(1)0;(2)【分析】(1)將特殊角的三角函數(shù)值代入求解;(2)將特殊角的三角函數(shù)值代入求解.【詳解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值.22、(1)見詳解;(2)12【分析】(1)由角平分線性質(zhì),得到∠ABD=∠CBD,由EF是BD的中垂線,則BE=DE,則∠CBD=∠EDB,則∠ABD=∠EDB,即可得到答案;(2)先證明四邊形BEDF是菱形,由DE∥AB,得到DE=CD=3,即可求出周長;【詳解】(1)證明:∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,∵EF是BD的中垂線,∴BE=DE,BF=DF,∴∠CBD=∠EDB,∴∠ABD=∠EDB,∴DE∥AB;(2)解:與(1)同理,可證DF∥BC,∴四邊形BEDF是平行四邊形,∵BE=DE,∴四邊形BEDF是菱形,∵AB=BC,DE∥AB,∴∠C=∠ABC=∠DEC,∴DE=CD=3,∴菱形BEDF的周長為:.【點睛】本題考查了菱形的判定和性質(zhì),垂直平分線的性質(zhì),角平分線的性質(zhì),以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練掌握所學(xué)的性質(zhì),從而正確的進行推導(dǎo).23、(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是1s或3s;(2)在飛行過程中,小球從飛出到落地所用時間是4s;(3)在飛行過程中,小球飛行高度第2s時最大,最大高度是20m.【解析】分析:(1)根據(jù)題目中的函數(shù)解析式,令y=15即可解答本題;(2)令y=0,代入題目中的函數(shù)解析式即可解答本題;(3)將題目中的函數(shù)解析式化為頂點式即可解答本題.詳解:(1)當y=15時,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飛行過程中,當小球的飛行高度為15m時,飛行時間是1s或3s;(2)當y=0時,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飛行過程中,小球從飛出到落地所用時間是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴當x=2時,y取得最大值,此時,y=20,答:在飛行過程中,小球飛行高度第2s時最大,最大高度是20m.點睛:本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.24、(1)直線的解析式為,k=1;(2)2.【解析】(1)根據(jù)平移的性質(zhì)即可求得直線的解析式,由直線和即可求得A的坐標,然后代入雙曲線求得k的值;(2)作軸于E,軸于F,聯(lián)立方程求得B點的坐標,然后根據(jù),求得即可.【詳解】解:(1)根據(jù)平移的性質(zhì),將直線向左平移一個單位后得到,∴直線的解析式為,∵直線與雙曲線相交于點A,∴A點的橫坐標和縱坐標相等,∵,∴,;(2)作軸于E,軸于F,解得或∴,∵,∴.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解題的關(guān)鍵是熟練掌握待定系數(shù)法,學(xué)會構(gòu)建方程組確定交點坐標,屬于中考??碱}型.25、(1)OB=6,=;(2)的坐標為;;(3)存在,,,,【分析】(1)根據(jù)題意先確定OA,OB的長,再根據(jù)△OCA∽△OBC,可得出關(guān)于OC、OA、OB的比例關(guān)系式即可求出線段、的長;(2)由題意利用相似三角形的對應(yīng)邊成比例和勾股定理來求C點的坐標,并將C點坐標代入拋物線中即可求出拋物線的解析式;(3)根據(jù)題意運用等腰三角形的性質(zhì),對所有符合條件的點的坐標進行討論可知有四個符合條件的點,分別進行分析求解即可.【詳解】解:(1)由()得,,即:,∵∽∴∴(舍去)∴線段的長為.(2)∵∽∴,設(shè),則,由得,解得(-2舍去),∴,,過點作于點,由面積得,∴的坐標為將點的坐標代入拋物線的解析式得∴.(3)存在,,,①當P1與O重合時,△BCP1為等腰三角形∴P1的坐標為(0,0);②當P2B=BC時(P2在B點的左側(cè)),△BCP2為等腰三角形∴P2的坐標為(6-2,0);③當P3為AB的中點時,P3B=P3C,△BCP3為等腰三角形∴P3的坐標為(4,0);④當BP4=BC時(P4在B點的右側(cè)),△BCP4為等腰三角形∴P4的坐標為(6+2,0);∴在x軸上存在點P,使△BCP為等腰三角形,符合條件的點P的坐標為:,,,.【點睛】本題考查二次函數(shù)的綜合問題,掌握由拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:緊密型城市醫(yī)療集團內(nèi)患者就醫(yī)行為與衛(wèi)生資源配置的協(xié)同性研究
- 2025年專題講座心得體會樣本(3篇)
- 2025年度木材行業(yè)木方材料進出口采購合同范本4篇
- 二零二五版現(xiàn)代農(nóng)業(yè)園區(qū)麻石灌溉系統(tǒng)合同4篇
- 二零二五年度知識產(chǎn)權(quán)許可使用合同爭議處理規(guī)則范本4篇
- 二零二五年度城市公交公司駕駛員服務(wù)合同標準模板3篇
- 2025年公共安全項目投標失敗應(yīng)急響應(yīng)與合同條款合同3篇
- 二零二五年度出差安全教育與安全保障合作協(xié)議4篇
- 二零二五年度出境游領(lǐng)隊導(dǎo)游服務(wù)合同4篇
- 二零二五版夾板行業(yè)供應(yīng)鏈管理合作協(xié)議4篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測試卷(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實驗技術(shù)教程
- 汽車、電動車電池火災(zāi)應(yīng)對
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 免疫組化he染色fishish
- 新東方四級詞匯-正序版
- 借名購車位協(xié)議書借名購車位協(xié)議書模板(五篇)
- 同步輪尺寸參數(shù)表詳表參考范本
評論
0/150
提交評論