遼寧省大連市新民間聯(lián)盟2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第1頁
遼寧省大連市新民間聯(lián)盟2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第2頁
遼寧省大連市新民間聯(lián)盟2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第3頁
遼寧省大連市新民間聯(lián)盟2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第4頁
遼寧省大連市新民間聯(lián)盟2022-2023學年數(shù)學九年級第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.在△ABC中,D是AB中點,E是AC中點,若△ADE的面積是3,則△ABC的面積是()A.3 B.6 C.9 D.122.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.3.反比例函數(shù)y=的圖象,在每個象限內(nèi),y的值隨x值的增大而增大,則k可以為()A.0 B.1 C.2 D.34.已知拋物線y=﹣x2+bx+4經(jīng)過(﹣2,﹣4),則b的值為()A.﹣2 B.﹣4 C.2 D.45.如圖,二次函數(shù)的最大值為3,一元二次方程有實數(shù)根,則的取值范圍是A.m≥3 B.m≥-3 C.m≤3 D.m≤-36.一次抽獎活動特等獎的中獎率為,把用科學記數(shù)法表示為()A. B. C. D.7.如圖,以AB為直徑的⊙O上有一點C,且∠BOC=50°,則∠A的度數(shù)為()A.65° B.50° C.30° D.25°8.如圖,AB是⊙O的直徑,OC是⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結DC交直徑AB與點E,若∠AOC=60°,則∠AED的范圍為()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°9.下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.已知,滿足,則的值是().A.16 B. C.8 D.11.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為()A.4或5 B.4或7 C.4或5或7 D.4或7或912.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=1,與x軸交于A、B(-1,0),與y軸交于C.下列結論錯誤的是()A.二次函數(shù)的最大值為a+b+c B.4a-2b+c﹤0C.當y>0時,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情況可能是無實數(shù)解,或一個解,或二個解.二、填空題(每題4分,共24分)13.如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為,則AK=.14.已知關于x的一元二次方程兩根是分別α和β則m=_____,α+β=_____.15.如圖,是的邊上一點,且點的橫坐標為3,,則______.16.若正多邊形的每一個內(nèi)角為,則這個正多邊形的邊數(shù)是__________.17.拋物線經(jīng)過點,則這條拋物線的對稱軸是直線__________.18.已知反比例函數(shù)的圖象的一支位于第一象限,則常數(shù)m的取值范圍是___.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,矩形ABCD的邊CD在y軸上,點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,AB交x軸與點E,.

(1)求k的值;(2)若,點P為y軸上一動點,當?shù)闹底钚r,求點P的坐標.20.(8分)為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.分數(shù)段頻數(shù)頻率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)請在圖中補全頻數(shù)直方圖;(3)甲同學的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分數(shù)段內(nèi);(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.21.(8分)某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)圖表信息,解答下列問題:本次調(diào)查隨機抽取了____名學生:表中;補全條形統(tǒng)計圖:若全校有名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有多少人22.(10分)地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)23.(10分)已知:如圖,將△ADE繞點A順時針旋轉得到△ABC,點E對應點C恰在D的延長線上,若BC∥AE.求證:△ABD為等邊三角形.24.(10分)如圖,點A、點B的坐標分別為(4,0)、(0,3),將線段BA繞點A沿順時針旋轉90°,設點B旋轉后的對應點是點B1,求點B1的坐標.25.(12分)如圖,海上有A、B、C三座小島,小島B在島A的正北方向,距離為121海里,小島C分別位于島B的南偏東53°方向,位于島A的北偏東27°方向,求小島B和小島C之間的距離.(參考數(shù)據(jù):sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)26.有甲、乙兩個不透明的布袋,甲袋中有3個完全相同的小球,分別標有數(shù)字0,1和2;乙袋中有3個完全相同的小球,分別標有數(shù)字1,2和3,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點M的坐標(x,y).(1)寫出點M所有可能的坐標;(2)求點M在直線上的概率.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)相似三角形的性質(zhì)與判定即可求出答案.【詳解】解:∵D是AB中點,E是AC中點,∴DE是△ABC的中位線,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故選:D.【點睛】本題考查了相似三角形的面積問題,掌握相似三角形的性質(zhì)與判定是解題的關鍵.2、A【分析】讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.3、A【解析】試題分析:因為y=的圖象,在每個象限內(nèi),y的值隨x值的增大而增大,所以k-1<0,k<1.故選A.考點:反比例函數(shù)的性質(zhì).4、C【分析】將點的坐標代入拋物線的解析式求解即可.【詳解】因為拋物線y=﹣x1+bx+4經(jīng)過(﹣1,﹣4),所以﹣4=﹣(﹣1)1﹣1b+4,解得:b=1.故選:C.【點睛】本題主要考查的是二次函數(shù)的性質(zhì).解題的關鍵是掌握二次函數(shù)的性質(zhì),明確拋物線經(jīng)過的點的坐標滿足拋物線的解析式是解題的關鍵.5、C【解析】方程ax2+bx+c-m=0有實數(shù)相當于y=ax2+bx+c(a≠0)平移m個單位與x軸有交點,結合圖象可得出m的范圍.【詳解】方程ax2+bx+c-m=0有實數(shù)根,相當于y=ax2+bx+c(a≠0)平移m個單位與x軸有交點,又∵圖象最高點y=3,∴二次函數(shù)最多可以向下平移三個單位,∴m≤3,故選:C.【點睛】本題主要考查二次函數(shù)圖象與一元二次方程的關系,掌握二次函數(shù)圖象與x軸交點的個數(shù)與一元二次方程根的個數(shù)的關系是解題的關鍵.6、D【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.00002=2×10﹣1.故選D.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、D【分析】根據(jù)圓周角定理計算即可.【詳解】解:由圓周角定理得,,故選:D.【點睛】本題考查的是圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8、D【分析】連接BD,根據(jù)圓周角定理得出∠ADC=30°,∠ADB=90°,再根據(jù)三角形的外角性質(zhì)可得到結論.【詳解】如圖,連接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故選D【點睛】本題考查了圓周角定理和三角形的外角性質(zhì).正確應用圓周角定理找出∠ADC=30°,∠ADB=90°是解題的關鍵.9、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、既是軸對稱圖形,又是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、A【分析】先把等式左邊分組因式分解,化成非負數(shù)之和等于0形式,求出x,y即可.【詳解】由得所以=0,=0所以x=-2,y=-4所以=(-4)-2=16故選:A【點睛】考核知識點:因式分解運用.靈活拆項因式分解是關鍵.11、D【解析】由條件可求得AB=8,可知E點的運動路線為從A到B,再從B到AB的中點,當△BDE為直角三角形時,只有∠EDB=90°或∠DEB=90°,再結合△BDE和△ABC相似,可求得BE的長,則可求得t的值.【詳解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D為BC中點,∴BD=2cm,∵0≤t<12,∴E點的運動路線為從A到B,再從B到AB的中點,按運動時間分為0≤t≤8和8<t<12兩種情況,①當0≤t≤8時,AE=tcm,BE=BC-AE=(8-t)cm,當∠EDB=90°時,則有AC∥ED,∵D為BC中點,∴E為AB中點,此時AE=4cm,可得t=4;當∠DEB=90°時,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②當8<t<12時,則此時E點又經(jīng)過t=7秒時的位置,此時t=8+1=9;綜上可知t的值為4或7或9,故選:D.【點睛】本題主要考查相似三角形的判定和性質(zhì),用t表示出線段的長,化動為靜,再根據(jù)相似三角形的對應邊成比例找到關于t的方程是解決這類問題的基本思路.12、D【分析】A.根據(jù)對稱軸為時,求得頂點對應的y的值即可判斷;B.根據(jù)當時,函數(shù)值小于0即可判斷;C.根據(jù)拋物線與軸的交點坐標即可判斷.D.根據(jù)拋物線與直線的交點情況即可判斷.【詳解】A.∵當時,,根據(jù)圖象可知,,正確.不符合題意;B.∵當時,,根據(jù)圖象可知,,正確.不符合題意;C.∵拋物線是軸對稱圖形,對稱軸是直線,點,所以與軸的另一個交點的坐標為,根據(jù)圖象可知:當時,,正確.不符合題意;D.根據(jù)圖象可知:拋物線與直線有兩個交點,∴關于的方程有兩個不相等的實數(shù)根,本選項錯誤,符合題意.故選:D.【點睛】本題考查了二次函數(shù)與系數(shù)的關系、根的判別式、拋物線與x軸的交點,掌握二次函數(shù)的性質(zhì)、二次函數(shù)圖象與系數(shù)的關系是解題的關鍵.二、填空題(每題4分,共24分)13、.【詳解】連接BH,如圖所示:∵四邊形ABCD和四邊形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉的性質(zhì)得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB?tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案為.考點:旋轉的性質(zhì).14、-21【分析】首先根據(jù)一元二次方程的概念求出m的值,然后根據(jù)根與系數(shù)的關系即可得出答案.【詳解】∵是一元二次方程,,解得,.兩根是分別α和β,,故答案為:-2,1.【點睛】本題主要考查一元二次方程,掌握一元二次方程的概念及根與系數(shù)的關系是解題的關鍵.15、【分析】由已知條件可得出點P的縱坐標為4,則就等于點P的縱坐標與其橫坐標的比值.【詳解】解:由題意可得,∵,∴點P的縱坐標為4,∴就等于點P的縱坐標與其橫坐標的比值,∴.故答案為:.【點睛】本題考查的知識點是正弦與正切的定義,熟記定義內(nèi)容是解此題的關鍵.16、八(或8)【解析】分析:根據(jù)正多邊形的每一個內(nèi)角為,求出正多邊形的每一個外角,根據(jù)多邊形的外角和,即可求出正多邊形的邊數(shù).詳解:根據(jù)正多邊形的每一個內(nèi)角為,正多邊形的每一個外角為:多邊形的邊數(shù)為:故答案為八.點睛:考查多邊形的外角和,掌握多邊形的外角和是解題的關鍵.17、【分析】根據(jù)拋物線的軸對稱性,即可得到答案.【詳解】∵拋物線經(jīng)過點,且點,點關于直線x=1對稱,∴這條拋物線的對稱軸是:直線x=1.故答案是:.【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì),掌握拋物線的軸對稱性,是解題的關鍵.18、m>1【解析】試題分析:∵反比例函數(shù)的圖象關于原點對稱,圖象一支位于第一象限,∴圖象的另一分支位于第三象限.∴m﹣1>0,解得m>1.三、解答題(共78分)19、(1);(2)(0,)【分析】(1)設B(a,b),由反比例函數(shù)圖象上點的坐標特征用函數(shù)a的代數(shù)式表示出來b,進而可得ab=6,再根據(jù)可得,再設A(m,n),可得,再根據(jù)即可求得k的值;(2)先根據(jù)求得點A、B的坐標,再利用軸對稱找到符合題意的點P,求出直線的函數(shù)關系式,進而可求出點P的坐標.【詳解】解:(1)設B(a,b),∵B在反比例函數(shù)的圖象上,∴b=,∴ab=6,即,∵.∴,∴設A(m,n),∵A在反比例函數(shù)的圖象上,∴,∴,∵,∴,∴,∴,即;(2)∵,∴當a=2時,b==3,∴B(2,3),當m=2時,∴A(2,-2),作點B關于y軸的對稱點(-2,3),連接,交y軸于點P,連接PB,則PB=,∴,∵兩點之間,線段最短,∴此時的即可取得最小值,設為y=k1x+b1,將(-2,3),A(2,-2)代入得解得∴令x=0,則∴點P的坐標為(0,).

【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、兩點之間線段最短以及用待定系數(shù)法求一次函數(shù)關系式,熟練掌握反比例函數(shù)和一次函數(shù)的性質(zhì)是解決本題的關鍵.20、(1)8,0.35;(2)見解析;(3)89.5~94.5;(4).【分析】(1)根據(jù)頻數(shù)=總數(shù)×頻率可求得m的值,利用頻率=頻數(shù)÷總數(shù)可求得n的值;(2)根據(jù)m的值補全直方圖即可;(3)根據(jù)中位數(shù)的概念進行求解即可求得答案;(4)畫樹狀圖得到所有等可能的情況數(shù),找出符合條件的情況數(shù),然后利用概率公式進行求解即可.【詳解】(1)m=40×0.2=8,n=14÷40=0.35,故答案為8,0.35;(2)補全圖形如下:(3)由于40個數(shù)據(jù)的中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在89.5~94.5,∴推測他的成績落在分數(shù)段89.5~94.5內(nèi),故答案為89.5~94.5;(4)選手有4人,2名是男生,2名是女生,畫樹狀圖如下:共有12種等可能的結果,其中一名男生一名女生的結果數(shù)有8種,所以恰好是一名男生和一名女生的概率為.【點睛】本題考查了頻數(shù)(率)分布表,頻數(shù)分布直方圖,中位數(shù),列表法或樹狀圖法求概率,正確把握相關知識是解題的關鍵.21、(1)50,20,0.12;(2)詳見解析;(3)1.【分析】(1)根據(jù)總數(shù)×頻率=頻數(shù),即可得到答案;(2)根據(jù)統(tǒng)計表的數(shù)據(jù),即可畫出條形統(tǒng)計圖;(3)根據(jù)全校總人數(shù)×達到“優(yōu)秀"和“良好”等級的學生的百分比,即可得到答案.【詳解】本次調(diào)查隨機抽取了名學生,.故答案為:;補全條形統(tǒng)計圖如圖所示:(人),答:該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有1多少人.【點睛】本題主要考查頻數(shù)統(tǒng)計表和條形統(tǒng)計圖,掌握統(tǒng)計表和條形統(tǒng)計圖的特征,是解題的關鍵.22、小亮說的對,CE為2.6m.【解析】先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數(shù)學問題.23、證明見解析.【分析】由旋轉的性質(zhì)可得,,可得,由平行線的性質(zhì)可得,可得,則可求,可得結論.【詳解】解:由旋轉知:△ADE≌△ABC,∴∠ACB=∠E,AC=AE,∴∠E=∠ACE,又BC∥AE,∴∠BCE+∠E=180°,即∠ACB+∠ACE+∠E=180°,∴∠E=60°,又AC=AE,∴△ACE為等邊三角形,∴∠CAE=60°又∠BAC=∠DAE∴∠BAD=∠CAE=60°又AB=AD∴△ABD為等邊三角形.【點睛】本題考查了旋轉的性質(zhì),等邊三角形的性質(zhì),平行線的性質(zhì)等知識,求出是本題的關鍵.24、B1點的坐標為(7,4)【分析】如圖,作B1C⊥x軸于C,證明△ABO≌△B1AC得到AC=OB=3,B1C=OA=4,然后寫出B1點的坐標.【詳解】如圖,作B1C⊥x軸于C.∵A(4,0)、B(0,3),∵OA=4,OB=3,∵線段BA繞點A沿順時針旋轉90°得AB1,∴BA=AB1,且∠BAB1=90°,∴∠BAO+∠B1AC=90°而∠BAO+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論