版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省巴中學市巴州區(qū)重點達標名校2024屆中考數(shù)學猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.42.-2的倒數(shù)是()A.-2 B. C. D.23.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.4.下列四個幾何體中,左視圖為圓的是()A. B. C. D.5.花園甜瓜是樂陵的特色時令水果.甜瓜一上市,水果店的小李就用3000元購進了一批甜瓜,前兩天以高于進價40%的價格共賣出150kg,第三天她發(fā)現(xiàn)市場上甜瓜數(shù)量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進價20%的價格全部售出,前后一共獲利750元,則小李所進甜瓜的質量為()kg.A.180 B.200 C.240 D.3006.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣17.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°8.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.29.在數(shù)軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④10.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.12.計算:=____.13.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是.14.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.15.因式分解:a3﹣2a2b+ab2=_____.16.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.三、解答題(共8題,共72分)17.(8分)解方程組:18.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.19.(8分)《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?20.(8分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.21.(8分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.22.(10分)如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點P的整個運動過程中.①當AF=3CF時,求出所有符合條件的m的值.②當tan∠DBE=時,直接寫出△CDP與△BDP面積比.23.(12分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.24.如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數(shù)和一次函數(shù)的解析式.若一次函數(shù)的圖象與x軸相交于點C,求∠ACO的度數(shù).結合圖象直接寫出:當>>0時,x的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B2、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握3、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.4、A【解析】
根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.5、B【解析】
根據(jù)題意去設所進烏梅的數(shù)量為,根據(jù)前后一共獲利元,列出方程,求出x值即可.【詳解】解:設小李所進甜瓜的數(shù)量為,根據(jù)題意得:,解得:,經(jīng)檢驗是原方程的解.答:小李所進甜瓜的數(shù)量為200kg.故選:B.【點睛】本題考查的是分式方程的應用,解題關鍵在于對等量關系的理解,進而列出方程即可.6、B【解析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.7、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質.8、B【解析】
根據(jù)旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.9、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數(shù)與數(shù)軸的關系10、D【解析】
解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點睛】本題考查圓的基本性質;垂經(jīng)定理及解直角三角形,綜合性較強,難度不大.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的性質,銳角三角函數(shù)的定義,正確添加輔助線構造出全等三角形是解題的關鍵.12、1【解析】
根據(jù)算術平方根的定義進行化簡,再根據(jù)算術平方根的定義求解即可.【詳解】解:∵12=21,
∴=1,
故答案為:1.【點睛】本題考查了算術平方根的定義,先把化簡是解題的關鍵.13、50°.【解析】
根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.14、2.【解析】
先求出點A的坐標,根據(jù)點的坐標的定義得到OC=3,AC=2,再根據(jù)線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.15、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.16、1.【解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.三、解答題(共8題,共72分)17、【解析】
設=a,=b,則原方程組化為,求出方程組的解,再求出原方程組的解即可.【詳解】設=a,=b,則原方程組化為:,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即,解得:,經(jīng)檢驗是原方程組的解,所以原方程組的解是.【點睛】此題考查利用換元法解方程組,注意要根據(jù)方程組的特點靈活選用合適的方法.解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.18、(1)DD′=1,A′F=4﹣;(2);(1).【解析】
(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.19、12【解析】
設矩形的長為x步,則寬為(60﹣x)步,根據(jù)題意列出方程,求出方程的解即可得到結果.【詳解】解:設矩形的長為x步,則寬為(60﹣x)步,依題意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合題意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),則該矩形的長比寬多12步.【點睛】此題考查了一元二次方程的應用,找出題中的等量關系是解本題的關鍵.20、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(t,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.詳解:(1)把A點坐標代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點P在x軸上,∴可設P點坐標為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點坐標為(﹣6,0)或(﹣2,0).點睛:本題主要考查函數(shù)圖象的交點,掌握函數(shù)圖象的交點坐標滿足每個函數(shù)解析式是解題的關鍵.21、2.【解析】
將原式化簡整理,整體代入即可解題.【詳解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【點睛】本題考查了代數(shù)式的化簡求值,屬于簡單題,整體代入是解題關鍵.22、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解析】
由知,再由知、,據(jù)此可得,證≌即可得;
易知四邊形ABEF是矩形,設,可得,證≌得,在中,由,列方程求解可得答案;
分點C在AF的左側和右側兩種情況求解:左側時由知、、,在中,由可得關于m的方程,解之可得;右側時,由知、、,利用勾股定理求解可得.作于點G,延長GD交BE于點H,由≌知,據(jù)此可得,再分點D在矩形內(nèi)部和外部的情況求解可得.【詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設,則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當點C在AF的左側時,,則,,,,在中,由可得,解得:負值舍去;如圖2,當點C在AF的右側時,,,,,,在中,由可得,解得:負值舍去;綜上,m的值為或;如圖3,過點D作于點G,延長GD交BE于點H,≌,,又,且,,當點D在矩形ABEF的內(nèi)部時,由可設、,則,,則;如圖4,當點D在矩形ABEF的外部時,由可設、,則,,則,綜上,與面積比為或.【點睛】本題考查了四邊形的綜合問題,解題的關鍵是掌握矩形的判定與性質、全等三角形的判定和性質及勾股定理、三角形的面積等知識點.23、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質得出EM=EF,在△BME中,由三角形的三邊關系得出BE+BM>EM即可得出結論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個人住房短期貸款合同2篇
- 高二化學選擇性必修二-物質結構與性質-專題復習系列3-第二章-分子結構與性質(1)(原卷版)
- 2025年度出租車司機意外傷害保險合同范本2篇
- 二零二五年度反擔保事宜知識產(chǎn)權質押合同3篇
- 學前教育課程評估體系的設計與實踐
- 2024石材行業(yè)競爭分析合同
- 家庭教育的智慧塑造孩子的健全人格
- 2024汽修工勞動合同與職業(yè)晉升規(guī)劃3篇
- 學??臻g布局的未來趨勢與挑戰(zhàn)
- 2024版煤礦工業(yè)廣場混凝土施工承包合同
- 信息科技課程標準測(2022版)考試題庫及答案
- NB-T32042-2018光伏發(fā)電工程建設監(jiān)理規(guī)范
- 《形體舞蹈》課程思政教學案例(一等獎)
- 風電機組電氣仿真模型建模導則(征求意見稿)
- 高考語文備考之從小說考點解讀《哦香雪》(知識點解讀+精品課件+比較閱讀+模擬命題)
- 2022年中醫(yī)館相關制度
- 異常反應調(diào)查診斷ppt課件
- 道路減速帶減速模型分析
- 身體健康狀況自測表
- 50T汽車吊吊裝施工方案
- PID控制原理與調(diào)整方法
評論
0/150
提交評論