2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題含解析_第1頁
2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題含解析_第2頁
2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題含解析_第3頁
2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題含解析_第4頁
2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年福建省龍巖市龍巖九中高考考前適應(yīng)性訓(xùn)練考試(一)數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.22.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.3.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.34.某大學(xué)計算機學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學(xué)習(xí)、服務(wù)器開發(fā)五個方向展開研究,且每個方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種5.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.6.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.7.已知集合,,則A. B. C. D.8.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2409.二項式展開式中,項的系數(shù)為()A. B. C. D.10.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.設(shè),,則()A. B. C. D.12.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_________.14.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關(guān)于直線對稱,則雙曲線的離心率為__________.15.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.16.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.18.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?9.(12分)已知,,求證:(1);(2).20.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.21.(12分)已知的內(nèi)角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運算求解能力,屬于基礎(chǔ)題.2.A【解析】

可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當(dāng)時,,,當(dāng)時,,則當(dāng)時,,單減,當(dāng)時,,單增;當(dāng)時,,,當(dāng),,當(dāng)時,單減,當(dāng)時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時,得,解得;當(dāng)與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題3.D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.4.B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當(dāng)人臉識別方向有2人時,有種,當(dāng)人臉識別方向有1人時,有種,∴共有360種.故選:B本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5.B【解析】

根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.6.D【解析】

根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.本題考查了等差數(shù)列的計算,意在考查學(xué)生的計算能力.7.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運算.8.A【解析】

利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.9.D【解析】

寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D本題主要考查了二項式定理的運算,屬于基礎(chǔ)題.10.C【解析】

由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當(dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.11.D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎(chǔ)題.12.C【解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時,,當(dāng)時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.14.【解析】

由點,關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因為為雙曲線:的左焦點,所以,又點,關(guān)于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為本題主要考查雙曲線的簡單性質(zhì),先由兩點對稱,求出直線斜率,再由焦點坐標(biāo)求出直線方程,根據(jù)中點在直線上,即可求出結(jié)果,屬于??碱}型.15.-8【解析】

通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時,在軸截距最大本題正確結(jié)果:本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.16.【解析】

由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2){1,2}.【解析】

(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設(shè),則,所以單調(diào)遞增,又因為,所以存在,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當(dāng)構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強,難度較大,側(cè)重考查數(shù)學(xué)抽象和邏輯推理的核心素養(yǎng).18.(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標(biāo)原點,以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長為因為所以所以,所以,設(shè)平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問題,屬于中檔題.19.(1)見解析;(2)見解析.【解析】

(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當(dāng)且僅當(dāng)a=b=c等號成立∴.本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.20.(1)(2)詳見解析【解析】

(1)利用可得的遞推關(guān)系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設(shè)的前n項和為.則,相減可得數(shù)列的通項與前項和的關(guān)系式,我們常利用這個關(guān)系式實現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.21.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當(dāng)時,的周長有最大值,且最大值為3,理由如下:由正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論