版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年四川省瀘州市瀘縣第四中學(xué)高三3月學(xué)情調(diào)研測試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時(shí),,求()A. B. C. D.2.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.3.已知數(shù)列滿足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.4.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.5.設(shè)集合,則()A. B. C. D.6.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米7.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點(diǎn)對稱C.周期為 D.在上是增函數(shù)8.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}9.函數(shù)的大致圖象是()A. B.C. D.10.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.11.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.12.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知二項(xiàng)式ax-1x6的展開式中的常數(shù)項(xiàng)為-16014.如圖,在平行四邊形中,,,則的值為_____.15.過動(dòng)點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.16.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.19.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.20.(12分)每年3月20日是國際幸福日,某電視臺隨機(jī)調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機(jī)抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸福”.(Ⅰ)求從這18人中隨機(jī)選取3人,至少有1人是“很幸?!钡母怕剩?Ⅱ)以這18人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸?!钡娜藬?shù),求的分布列及.21.(12分)已知不等式的解集為.(1)求實(shí)數(shù)的值;(2)已知存在實(shí)數(shù)使得恒成立,求實(shí)數(shù)的最大值.22.(10分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.2.C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).3.A【解析】
利用數(shù)列的遞推關(guān)系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.4.B【解析】
根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B本題主要考查對命題真假的判斷以及真值表的應(yīng)用,識記真值表,屬基礎(chǔ)題.5.C【解析】
解對數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.6.B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.7.D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).8.C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.9.A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.本題考查了函數(shù)圖象,屬基礎(chǔ)題.10.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.11.B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.12.B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14.【解析】
根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.15.【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.16.【解析】
先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對稱可得的表達(dá)式,再去掉絕對值即可解不等式;(2)對,不等式成立等價(jià)于,去絕對值得不等式組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點(diǎn)對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.18.(1).(2)【解析】
(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長,圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點(diǎn)G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).本題考查拋物線的性質(zhì)及直線與拋物線的綜合,換元方法的應(yīng)用,屬于中檔題.19.(1)見解析(2)【解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識易得最大值,然后可計(jì)算體積.【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面.?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑危?,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵.20.(Ⅰ).(Ⅱ)見解析.【解析】
(Ⅰ)人中很幸福的有人,可以先計(jì)算其逆事件,即人都認(rèn)為不很幸福的概率,再用減去人都認(rèn)為不很幸福的概率即可;(Ⅱ)根據(jù)題意,隨機(jī)變量,列出分布列,根據(jù)公式求出期望即可.【詳解】(Ⅰ)設(shè)事件抽出的人至少有人是“很幸?!钡?,則表示人都認(rèn)為不很幸福(Ⅱ)根據(jù)題意,隨機(jī)變量,的可能的取值為;;;所以隨機(jī)變量的分布列為:所以的期望本題考查了離散型隨機(jī)變量的概率分布列,數(shù)學(xué)期望的求解,概率分布中的二項(xiàng)分布問題,屬于常規(guī)題型.21.(1);(2)4【解析】
(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時(shí)不等式可化為當(dāng)時(shí),不等式可化為;當(dāng)時(shí),不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,即時(shí)等號成立∴,綜上實(shí)數(shù)最大值為4.本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 換熱機(jī)組招標(biāo)項(xiàng)目報(bào)名服務(wù)指南3篇
- 招標(biāo)邀請書的制作技巧指南3篇
- 文化生活意向房屋租賃合同3篇
- 撤訴委托書格式與范本3篇
- 新版薪酬補(bǔ)充合同3篇
- 工業(yè)電氣安裝合同模板3篇
- 數(shù)據(jù)服務(wù)合作協(xié)議3篇
- 文員的勞動(dòng)合同范本3篇
- 校園公園綠化養(yǎng)護(hù)協(xié)議
- 中央空調(diào)安裝合同
- 公寓de全人物攻略本為個(gè)人愛好而制成如需轉(zhuǎn)載注明信息
- 減少巡回護(hù)士手術(shù)中外出次數(shù)品管圈匯報(bào)書模板課件
- 5分鐘安全五人小品劇本
- 售后服務(wù)人員培訓(xùn)課件
- 福建省福州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃代碼
- 《高中語文文言斷句》一等獎(jiǎng)優(yōu)秀課件
- 大學(xué)生創(chuàng)新思維教學(xué)課件全套教學(xué)課件
- 教育研究導(dǎo)論首都師范
- 象棋比賽積分編排表
- 工會新聞的寫作培訓(xùn)講義(共36頁).ppt
- [爆笑小品校園劇本7人]爆笑小品校園劇本
評論
0/150
提交評論