版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年浙江省學(xué)軍中學(xué)高三下學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.32.已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù),使成立,則實(shí)數(shù)的值為()A. B. C. D.3.已知向量與向量平行,,且,則()A. B.C. D.4.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.5.已知函數(shù),集合,,則()A. B.C. D.6.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.1207.設(shè)變量滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.28.已知復(fù)數(shù)滿(mǎn)足:(為虛數(shù)單位),則()A. B. C. D.9.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.設(shè),是兩條不同的直線(xiàn),,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則11.如圖,在中,,且,則()A.1 B. C. D.12.已知斜率為2的直線(xiàn)l過(guò)拋物線(xiàn)C:的焦點(diǎn)F,且與拋物線(xiàn)交于A,B兩點(diǎn),若線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若,則_________.14.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.15.已知函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程是,則的值等于__________.16.設(shè)α、β為互不重合的平面,m,n是互不重合的直線(xiàn),給出下列四個(gè)命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號(hào)為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.18.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.19.(12分)已知.(1)若的解集為,求的值;(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.20.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).21.(12分)已知的內(nèi)角的對(duì)邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長(zhǎng)是否有最大值?如果有,求出這個(gè)最大值,如果沒(méi)有,請(qǐng)說(shuō)明理由.22.(10分)如圖所示,在四棱錐中,平面,底面ABCD滿(mǎn)足AD∥BC,,,E為AD的中點(diǎn),AC與BE的交點(diǎn)為O.(1)設(shè)H是線(xiàn)段BE上的動(dòng)點(diǎn),證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線(xiàn)BC與平面PBD所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出。【詳解】因?yàn)?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡(jiǎn)得,即令,所以,故選C。本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。2.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時(shí),y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時(shí),等號(hào)成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍?hào)同時(shí)成立時(shí),等號(hào)成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.3.B【解析】
設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可得出向量的坐標(biāo).【詳解】設(shè),且,,由得,即,①,由,②,所以,解得,因此,.故選:B.本題考查向量坐標(biāo)的求解,涉及共線(xiàn)向量的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中等題.4.B【解析】
由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問(wèn)題常見(jiàn)方法,有一定難度.5.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.本題主要考查了集合的基本運(yùn)算,難度容易.6.C【解析】
可分成兩類(lèi),一類(lèi)是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類(lèi)兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類(lèi),一類(lèi)是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類(lèi)兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類(lèi)還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問(wèn)題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.7.B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫(huà)出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線(xiàn),由圖可知當(dāng)直經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)在軸上的截距最大,最大值為,故選B.本題主要考查線(xiàn)性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8.A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9.B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B。本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。10.D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線(xiàn)面的位置關(guān)系.11.C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線(xiàn),又得到一個(gè)關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線(xiàn),則.故選:C此題考查的是平面向量基本定理的有關(guān)知識(shí),結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.12.C【解析】
設(shè)直線(xiàn)l的方程為x=y(tǒng),與拋物線(xiàn)聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線(xiàn)l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.本題主要考查了直線(xiàn)與拋物線(xiàn)的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
因?yàn)椋?因?yàn)?,所以,又,所以,所?.14.【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.15.【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線(xiàn)與過(guò)某點(diǎn)的切線(xiàn)的區(qū)別,本題屬于基礎(chǔ)題.16.④【解析】
根據(jù)直線(xiàn)和平面,平面和平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.【詳解】對(duì)于①,當(dāng)m∥n時(shí),由直線(xiàn)與平面平行的定義和判定定理,不能得出m∥α,①錯(cuò)誤;對(duì)于②,當(dāng)m?α,n?α,且m∥β,n∥β時(shí),由兩平面平行的判定定理,不能得出α∥β,②錯(cuò)誤;對(duì)于③,當(dāng)α∥β,且m?α,n?β時(shí),由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯(cuò)誤;對(duì)于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時(shí),由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號(hào)是④.故答案為:④.本題考查了直線(xiàn)和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),(2)【解析】試題分析:用零點(diǎn)分區(qū)間討論法解含絕對(duì)值的不等式,根據(jù)絕對(duì)值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設(shè)知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時(shí),恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].18.(1);(2)見(jiàn)解析.【解析】
(1)利用獨(dú)立事件的概率乘法公式可計(jì)算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【詳解】(1)記“第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為本題考查概率的計(jì)算,同時(shí)也考查了隨機(jī)變量分布列,考查計(jì)算能力,屬于基礎(chǔ)題.19.(1);(2)【解析】
(1)利用兩邊平方法解含有絕對(duì)值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對(duì)值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個(gè)實(shí)數(shù)根即,解得(2)因?yàn)樗砸共坏仁胶愠闪?,只需?dāng)時(shí),,解得,即;當(dāng)時(shí),,解得,即;綜上所述,的取值范圍是本題考查了含有絕對(duì)值的不等式解法與應(yīng)用問(wèn)題,也考查了分類(lèi)討論思想,是中檔題.20.(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當(dāng)時(shí),有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當(dāng)在上是單調(diào)增函數(shù),則,解得,檢驗(yàn)符合;②當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿(mǎn)足在區(qū)間上是閉函數(shù)只有。本題主要考查學(xué)生的應(yīng)用意識(shí),利用所學(xué)知識(shí)分析解決新定義問(wèn)題。21.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計(jì)算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因?yàn)椋?(Ⅱ)當(dāng)時(shí),的周長(zhǎng)有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因?yàn)?,所以,所以?dāng)即時(shí),取到最大值2,所以的周長(zhǎng)有最大值,最大值為3.本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.22.(1)證明見(jiàn)解析(2)(3)【解析】
(1)因?yàn)榈酌鍭BCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因?yàn)镠為線(xiàn)段BE上
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《學(xué)校課外音樂(lè)活動(dòng)組織》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《建設(shè)項(xiàng)目環(huán)境影響評(píng)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東技術(shù)師范大學(xué)《水文預(yù)報(bào)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東潮州衛(wèi)生健康職業(yè)學(xué)院《界面設(shè)計(jì)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 女員工培訓(xùn)課件
- 廣安職業(yè)技術(shù)學(xué)院《運(yùn)籌學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《巖石的破壞判據(jù)》課件
- 贛南師范大學(xué)《Moecuar》2023-2024學(xué)年第一學(xué)期期末試卷
- nfabe培訓(xùn)課件教學(xué)課件
- 甘孜職業(yè)學(xué)院《二外(法語(yǔ)-德語(yǔ)-俄語(yǔ)-阿拉伯語(yǔ))》2023-2024學(xué)年第一學(xué)期期末試卷
- 滯銷(xiāo)風(fēng)險(xiǎn)管理制度內(nèi)容
- 排污許可證辦理合同1(2025年)
- GB/T 44890-2024行政許可工作規(guī)范
- 上??颇恳豢荚囶}庫(kù)參考資料1500題-上海市地方題庫(kù)-0
- 軍工合作合同范例
- 【7地XJ期末】安徽省宣城市寧國(guó)市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試地理試題(含解析)
- 2025年中國(guó)稀土集團(tuán)總部部分崗位社會(huì)公開(kāi)招聘管理單位筆試遴選500模擬題附帶答案詳解
- 超市柜臺(tái)長(zhǎng)期出租合同范例
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測(cè)試語(yǔ)文試題(含答案)
- 【8物(科)期末】合肥市第四十五中學(xué)2023-2024學(xué)年八年級(jí)上學(xué)期期末物理試題
- 統(tǒng)編版2024-2025學(xué)年三年級(jí)語(yǔ)文上冊(cè)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試卷(含答案)
評(píng)論
0/150
提交評(píng)論