![新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練10.5 拋物線(基礎(chǔ)版)(解析版)_第1頁](http://file4.renrendoc.com/view2/M03/0F/2A/wKhkFma_0qOAQL18AAHHhJLVc1Q276.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練10.5 拋物線(基礎(chǔ)版)(解析版)_第2頁](http://file4.renrendoc.com/view2/M03/0F/2A/wKhkFma_0qOAQL18AAHHhJLVc1Q2762.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練10.5 拋物線(基礎(chǔ)版)(解析版)_第3頁](http://file4.renrendoc.com/view2/M03/0F/2A/wKhkFma_0qOAQL18AAHHhJLVc1Q2763.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練10.5 拋物線(基礎(chǔ)版)(解析版)_第4頁](http://file4.renrendoc.com/view2/M03/0F/2A/wKhkFma_0qOAQL18AAHHhJLVc1Q2764.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練10.5 拋物線(基礎(chǔ)版)(解析版)_第5頁](http://file4.renrendoc.com/view2/M03/0F/2A/wKhkFma_0qOAQL18AAHHhJLVc1Q2765.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
10.5拋物線(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一拋物線的定義及應(yīng)用【例1-1】(2022·北京·高三開學(xué)考試)已知點SKIPIF1<0為拋物線SKIPIF1<0上的點,且點P到拋物線C的焦點F的距離為3,則SKIPIF1<0____________.【答案】2【解析】拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,因為點SKIPIF1<0為拋物線SKIPIF1<0上的點,且點P到拋物線C的焦點F的距離為3,所以SKIPIF1<0,得SKIPIF1<0,故答案為:2【例1-2】(2022·廣西貴港)已知點SKIPIF1<0是拋物線SKIPIF1<0的焦點,SKIPIF1<0是SKIPIF1<0上的一點,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由拋物線的定義可知,SKIPIF1<0,所以SKIPIF1<0.故選:C.【一隅三反】1.(2022·河北)若點SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0為拋物線的焦點,則SKIPIF1<0______.【答案】5【解析】由題意,知拋物線的準(zhǔn)線方程為SKIPIF1<0,點A到準(zhǔn)線的距離為SKIPIF1<0,因為點SKIPIF1<0在拋物線SKIPIF1<0上,故SKIPIF1<0的長度等于點A到準(zhǔn)線的距離,所以SKIPIF1<0,故答案為:52.(2022·吉林)拋物線SKIPIF1<0上任意一點P到點SKIPIF1<0的距離最小值為___________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時取得最小值4,故答案為:43.(2022·河南)已知拋物線SKIPIF1<0的焦點是SKIPIF1<0,點SKIPIF1<0是拋物線上的動點,若SKIPIF1<0,則SKIPIF1<0的最小值為______,此時點SKIPIF1<0的坐標(biāo)為______.【答案】
SKIPIF1<0
SKIPIF1<0【解析】易知點SKIPIF1<0在拋物線內(nèi)部,設(shè)拋物線的準(zhǔn)線為SKIPIF1<0,則SKIPIF1<0的方程為SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點共線時,SKIPIF1<0最小,最小值為SKIPIF1<0,此時點SKIPIF1<0的縱坐標(biāo)為2,代入SKIPIF1<0,得SKIPIF1<0,所以此時點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.考點二拋物線的標(biāo)準(zhǔn)方程【例2-1】(2022·湖南)頂點在原點,焦點在x軸上且通徑長為6的拋物線的標(biāo)準(zhǔn)方程為______.【答案】SKIPIF1<0【解析】由拋物線的焦點在x軸上,設(shè)其方程為SKIPIF1<0,因為通徑長為6,所以SKIPIF1<0,所以SKIPIF1<0,所以所求拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0.【例2-2】(2022·全國·高三專題練習(xí))過拋物線SKIPIF1<0的焦點F的直線交拋物線于點A,B,交其準(zhǔn)線于點C,若SKIPIF1<0,則此拋物線方程為__________.【答案】SKIPIF1<0【解析】如圖,作SKIPIF1<0準(zhǔn)線于SKIPIF1<0,SKIPIF1<0準(zhǔn)線于SKIPIF1<0,設(shè)SKIPIF1<0,由拋物線定義得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,在直角三角形SKIPIF1<0中,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而得SKIPIF1<0,設(shè)準(zhǔn)線與x軸交于SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因此拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0.【一隅三反】1.(2022·西藏)已知拋物線過點SKIPIF1<0,則拋物線的標(biāo)準(zhǔn)方程為______.【答案】SKIPIF1<0或SKIPIF1<0【解析】∵拋物線過點SKIPIF1<0,且點SKIPIF1<0在第四象限,∴拋物線的開口向右或向下.若開口向右,則設(shè)方程為SKIPIF1<0,∵過點SKIPIF1<0,∴SKIPIF1<0,∴拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0;若開口向下,則設(shè)方程為SKIPIF1<0,∵過點SKIPIF1<0,∴SKIPIF1<0,∴拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.綜上,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.2.(2022北京)已知拋物線SKIPIF1<0上一點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,該點到準(zhǔn)線的距離為6,則該拋物線的標(biāo)準(zhǔn)方程為______.【答案】SKIPIF1<0或SKIPIF1<0【解析】由于拋物線的準(zhǔn)線方程是SKIPIF1<0,而點SKIPIF1<0到準(zhǔn)線的距離為6,所以點SKIPIF1<0的橫坐標(biāo)是SKIPIF1<0,于是SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故該拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.3.(2022·全國·課時練習(xí))下列條件中,一定能得到拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0的是______(填序號)(寫出一個正確答案即可).①焦點在x軸上;②焦點在y軸上;③拋物線上橫坐標(biāo)為1的點到焦點的距離為3;④焦點到準(zhǔn)線的距離為4;⑤由原點向過焦點的某直線作垂線,垂足坐標(biāo)為SKIPIF1<0.【答案】①③(答案不唯一)【解析】若要得到拋物線的方程為SKIPIF1<0,則焦點一定在x軸上,故①必選,②不選.若選①③,由拋物線的定義可知SKIPIF1<0,得SKIPIF1<0,則拋物線的方程為SKIPIF1<0.若選①⑤,設(shè)焦點SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,故拋物線的方程為SKIPIF1<0.由④可知SKIPIF1<0,故還可選擇①④.故答案可為①③或①⑤或①④.故答案為:①③(答案不唯一)考點三直線與拋物線的位置關(guān)系【例3】(2022·西安)已知拋物線的方程為SKIPIF1<0,若過點SKIPIF1<0的直線SKIPIF1<0與拋物線有公共點,則直線SKIPIF1<0的斜率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意知,直線SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,代入拋物線方程,消去SKIPIF1<0并整理,得SKIPIF1<0.當(dāng)SKIPIF1<0時(當(dāng)直線斜率存在時,需要討論斜率是否為SKIPIF1<0),顯然滿足題意;當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.綜上,SKIPIF1<0,故選:A.【一隅三反】1.(2022·黃石市)(多選)過拋物線SKIPIF1<0的焦點F的直線l與拋物線C交于SKIPIF1<0,SKIPIF1<0兩點,若SKIPIF1<0,則直線l的斜率為()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.-2【答案】BD【解析】設(shè)直線的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.滿足SKIPIF1<0.故選:BD2.(2022·貴州貴陽·高三開學(xué)考試(理))已知拋物線SKIPIF1<0的焦點為SKIPIF1<0是拋物線SKIPIF1<0上的一點,若SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點)的面積是(
)A.SKIPIF1<0 B.1 C.2 D.4【答案】A【解析】由題可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為坐標(biāo)原點)的面積是SKIPIF1<0.故選:A.3.(2022·廣東高三開學(xué)考試)過點SKIPIF1<0的兩條直線與拋物線C:SKIPIF1<0分別相切于A,B兩點,則三角形PAB的面積為()A.SKIPIF1<0 B.3SKIPIF1<0 C.27 D.SKIPIF1<0【答案】A【解析】拋物線SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0兩點的坐標(biāo)為SKIPIF1<0,則有SKIPIF1<0,整理得SKIPIF1<0,同理SKIPIF1<0SKIPIF1<0故直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,因為點SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,故三角形SKIPIF1<0的面積為SKIPIF1<0故選:SKIPIF1<0.考點四弦長【例4-1】(2022·云南玉溪·高二期末)直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】拋物線SKIPIF1<0的焦點為SKIPIF1<0在直線SKIPIF1<0上,故SKIPIF1<0是拋物線的焦點弦,則由SKIPIF1<0得:SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0故選:D.【例4-2】(2022·廣東·高三階段練習(xí))已知拋物線SKIPIF1<0的焦點為F,點A,B是拋物線C上不同兩點,且A,B中點的橫坐標(biāo)為2,則SKIPIF1<0(
)A.4 B.5 C.6 D.8【答案】C【解析】設(shè)SKIPIF1<0,由A,B中點的橫坐標(biāo)為2,可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:C.【一隅三反】1.(2021·江蘇揚州·高三月考)直線SKIPIF1<0過拋物線SKIPIF1<0的焦點F,且與C交于A,B兩點,則SKIPIF1<0___________.【答案】8【解析】因為拋物線SKIPIF1<0的焦點坐標(biāo)為SKIPIF1<0,又直線SKIPIF1<0過拋物線SKIPIF1<0的焦點F,所以SKIPIF1<0,拋物線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:8.2.(2021·全國高三(理))已知拋物線SKIPIF1<0,過拋物線焦點F的直線與拋物線C交于A?B兩點,交拋物線的準(zhǔn)線于點P,若F為PB.中點,且SKIPIF1<0,則|AB|=()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】如圖,分別過A,B作準(zhǔn)線的垂線,垂足為M,N,由拋物線定義知,SKIPIF1<0,又F為PB.中點,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0故選:D3.(2022·云南)已知拋物線SKIPIF1<0上一點SKIPIF1<0到焦點SKIPIF1<0的距離為4.(1)求實數(shù)SKIPIF1<0的值;(2)若直線SKIPIF1<0過SKIPIF1<0的焦點,與拋物線交于SKIPIF1<0,SKIPIF1<0兩點,且SKIPIF1<0,求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【解析】(1)由題意可知:SKIPIF1<0,解得:SKIPIF1<0.(2)由(1)知拋物線SKIPIF1<0,則焦點坐標(biāo)為SKIPIF1<0,由題意知直線SKIPIF1<0斜率不為0,設(shè)直線SKIPIF1<0為:SKIPIF1<0,SKIPIF1<0聯(lián)立直線與拋物線:SKIPIF1<0,消SKIPIF1<0得:SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0為:SKIPIF1<0或SKIPIF1<010.5拋物線(精練)(基礎(chǔ)版)題組一題組一拋物線的定義及運用1.(2022·云南)已知拋物線SKIPIF1<0上的點SKIPIF1<0到該拋物線焦點SKIPIF1<0的距離為2,則SKIPIF1<0(
)A.1B.2C.4D.6【答案】C【解析】由SKIPIF1<0,可得其焦點SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,因為點SKIPIF1<0到該拋物線焦點SKIPIF1<0的距離為2,所以點SKIPIF1<0到拋物線準(zhǔn)線的距離為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故選:C.2.(2022·云南·羅平縣)若拋物線SKIPIF1<0上的一點SKIPIF1<0到它的焦點的距離為8,則SKIPIF1<0(
)A.6 B.8 C.12 D.16【答案】D【解析】由題意,拋物線SKIPIF1<0上的一點SKIPIF1<0到它的焦點的距離為8,根據(jù)拋物線的定義,可得SKIPIF1<0,解得SKIPIF1<0.故選:D.3.(2022·安徽·高三開學(xué)考試)設(shè)拋物線SKIPIF1<0上一點SKIPIF1<0到SKIPIF1<0軸的距離是1,則點SKIPIF1<0到該拋物線焦點的距離是(
)A.3 B.4 C.7 D.13【答案】B【解析】因為SKIPIF1<0,則準(zhǔn)線方程為SKIPIF1<0,依題意,點SKIPIF1<0到該拋物線焦點的距離等于點SKIPIF1<0到其準(zhǔn)線SKIPIF1<0的距離,即SKIPIF1<0.故選:B.4.(2022·全國·課時練習(xí))某學(xué)習(xí)小組研究一種如圖1所示的衛(wèi)星接收天線,發(fā)現(xiàn)其軸截面為圖2所示的拋物線形,在軸截面內(nèi)的衛(wèi)星信號波束呈近似平行的狀態(tài)射入,經(jīng)反射聚焦到焦點SKIPIF1<0處,已知衛(wèi)星接收天線的口徑(直徑)為SKIPIF1<0,深度為SKIPIF1<0,則該衛(wèi)星接收天線軸截面所在的拋物線的焦點到頂點的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】建立如圖所示的平面直角坐標(biāo)系,衛(wèi)星接收天線的軸截面的上、下頂點分別記為SKIPIF1<0,SKIPIF1<0,設(shè)軸截面所在的拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,由已知條件,得點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以所求焦點坐標(biāo)為SKIPIF1<0,因此衛(wèi)星接收天線的軸截面所在的拋物線的焦點到頂點的距離為SKIPIF1<0.故選:B5.(2022·河南平頂山)已知拋物線SKIPIF1<0,SKIPIF1<0為該拋物線上一點,B為圓SKIPIF1<0上的一個動點,則SKIPIF1<0的最小值為___________.【答案】3【解析】由題意得:SKIPIF1<0,拋物線SKIPIF1<0焦點為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)A,F,C三點共線時取等號,而SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0,故答案為:36.(2022·全國·課時練習(xí))已知點SKIPIF1<0為拋物線SKIPIF1<0上的一個動點,設(shè)點SKIPIF1<0到拋物線的準(zhǔn)線的距離為SKIPIF1<0,點SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【解析】拋物線SKIPIF1<0的焦點SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0.過點SKIPIF1<0作拋物線準(zhǔn)線的垂線,垂足為點SKIPIF1<0,由拋物線的定義可得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0為線段SKIPIF1<0與拋物線的交點時,等號成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.7.(2023·全國·高三專題練習(xí))已知P為拋物線SKIPIF1<0上任意一點,F(xiàn)為拋物線的焦點,SKIPIF1<0為平面內(nèi)一定點,則SKIPIF1<0的最小值為__________.【答案】5【解析】由題意,拋物線的準(zhǔn)線為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0,過點SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0共線時,和最?。贿^點SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,所以最小值為5.故答案為:5.題組二題組二拋物線的標(biāo)準(zhǔn)方程1.(2022·云南)一個正三角形的兩個頂點在拋物線SKIPIF1<0上,另一個頂點是坐標(biāo)原點,如果這個三角形的面積為SKIPIF1<0,則該拋物線的標(biāo)準(zhǔn)方程為______.【答案】SKIPIF1<0【解析】設(shè)正三角形邊長為x.由三角形的面積公式:SKIPIF1<0,解得:SKIPIF1<0.由拋物線的對稱性,可知正三角形在拋物線上的兩點關(guān)于x軸對稱,則當(dāng)SKIPIF1<0時,三角形的一個頂點坐標(biāo)為SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0;當(dāng)SKIPIF1<0時,三角形的一個頂點坐標(biāo)為SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0.綜上,SKIPIF1<0.所以拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.故答案為:SKIPIF1<02.(2021·海南)已知拋物線的準(zhǔn)線方程是SKIPIF1<0,則拋物線的標(biāo)準(zhǔn)方程是__________.【答案】SKIPIF1<0【解析】由題意,設(shè)拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,準(zhǔn)線方程是SKIPIF1<0,
SKIPIF1<0拋物線的準(zhǔn)線方程為SKIPIF1<0,
SKIPIF1<0,解得SKIPIF1<0,即所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0故答案為:SKIPIF1<03.(2021·北京二中)已知拋物線SKIPIF1<0過點SKIPIF1<0,則其準(zhǔn)線方程為___________.【答案】SKIPIF1<0【解析】SKIPIF1<0拋物線SKIPIF1<0經(jīng)過點SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0,拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,故答案為:SKIPIF1<0.4.(2022·福建泉州)已知拋物線SKIPIF1<0上有一點SKIPIF1<0與焦點之間的距離為3,則SKIPIF1<0___________.【答案】2【解析】由題意可得:準(zhǔn)線為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0故答案為:2.5.(2022·湖南)已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線與SKIPIF1<0軸交于點SKIPIF1<0,點SKIPIF1<0是拋物線SKIPIF1<0上一點,SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,且SKIPIF1<0,則拋物線SKIPIF1<0的方程為____________.【答案】SKIPIF1<0【解析】依題意可得SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<06.(2022·全國·單元測試)位于德國東部薩克森州的萊科勃克橋(如圖所示)有“仙境之橋”之稱,它的橋形可以近似地看成拋物線,該橋的高度為5m,跨徑為12m,則橋形對應(yīng)的拋物線的焦點到準(zhǔn)線的距離為______m.【答案】SKIPIF1<0【解析】以拋物線的最高點O為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的解析式為SKIPIF1<0,SKIPIF1<0,因為拋物線過點SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以拋物線的焦點到準(zhǔn)線的距離為SKIPIF1<0.故答案為:SKIPIF1<07.(2022·黑龍江)設(shè)拋物線SKIPIF1<0的頂點在坐標(biāo)原點,焦點SKIPIF1<0在坐標(biāo)軸上,點SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0,若以線段SKIPIF1<0為直徑的圓過坐標(biāo)軸上距離原點為1的點,試寫出一個滿足題意的拋物線SKIPIF1<0的方程為______.【答案】SKIPIF1<0(答案不唯一)【解析】由題意,若拋物線的焦點SKIPIF1<0在SKIPIF1<0軸正半軸上,則可設(shè)拋物線方程為SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,SKIPIF1<0,由焦半徑公式可知SKIPIF1<0,圓的半徑為SKIPIF1<0,得SKIPIF1<0,并且線段SKIPIF1<0中點的縱坐標(biāo)是SKIPIF1<0,所以以線段SKIPIF1<0為直徑的圓與SKIPIF1<0軸相切,切點坐標(biāo)為SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,即點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,代入拋物線方程SKIPIF1<0(SKIPIF1<0)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即當(dāng)點SKIPIF1<0在SKIPIF1<0軸正半軸上時,拋物線方程是SKIPIF1<0或SKIPIF1<0.同理,當(dāng)點SKIPIF1<0在SKIPIF1<0軸負(fù)半軸時,拋物線方程為SKIPIF1<0或SKIPIF1<0,當(dāng)點F在SKIPIF1<0軸正半軸時,拋物線方程為SKIPIF1<0或SKIPIF1<0,當(dāng)點SKIPIF1<0在SKIPIF1<0軸負(fù)半軸時,拋物線方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).8.(2022·福建)根據(jù)下列條件寫出拋物線的標(biāo)準(zhǔn)方程:(1)經(jīng)過點SKIPIF1<0;(2)焦點為直線SKIPIF1<0與坐標(biāo)軸的交點.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【解析】(1)當(dāng)拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0SKIPIF1<0時,將點SKIPIF1<0代入,得SKIPIF1<0,即所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0;當(dāng)拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0SKIPIF1<0時,將點SKIPIF1<0代入,得SKIPIF1<0,即所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.綜上,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.(2)令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0所以拋物線的焦點坐標(biāo)為SKIPIF1<0或SKIPIF1<0.當(dāng)焦點為SKIPIF1<0時,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.當(dāng)焦點為SKIPIF1<0時,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.綜上,拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.題組三題組三直線與拋物線的位置關(guān)系1(2022·陜西渭南·)已知拋物線SKIPIF1<0與直線SKIPIF1<0有且僅有一個交點,則SKIPIF1<0(
)A.4 B.2 C.0或4 D.8【答案】C【解析】聯(lián)立SKIPIF1<0得:SKIPIF1<0,當(dāng)SKIPIF1<0時,交點為SKIPIF1<0,滿足題意;當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0,綜上可知:SKIPIF1<0或SKIPIF1<0,故選:C2.(2022·貴州黔東南)在平面直角坐標(biāo)系SKIPIF1<0中,過點SKIPIF1<0的直線SKIPIF1<0交拋物線C:SKIPIF1<0于不同的兩點SKIPIF1<0,則SKIPIF1<0(
)A.16 B.32 C.64 D.56【答案】B【解析】易知直線SKIPIF1<0斜率存在,設(shè)SKIPIF1<0:SKIPIF1<0,SKIPIF1<0聯(lián)立方程SKIPIF1<0整理得SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故選:B.3.(2022·四川自貢)過點SKIPIF1<0與拋物線SKIPIF1<0只有一個公共點的直線有(
)A.1條 B.2條 C.3條 D.無數(shù)條【答案】C【解析】由已知,可得①當(dāng)直線過點SKIPIF1<0且與SKIPIF1<0軸平行時,方程為SKIPIF1<0,與拋物線SKIPIF1<0只有一個公共點;②當(dāng)直線斜率不存在時,方程為SKIPIF1<0,與拋物線SKIPIF1<0只有一個公共點;③當(dāng)直線斜率存在時,設(shè)直線方程為SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故直線方程SKIPIF1<0.所以存在3條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足過點SKIPIF1<0與拋物線SKIPIF1<0只有一個公共點.故選:C.4.(2022·上海徐匯)已知直線l過點SKIPIF1<0,且與拋物線SKIPIF1<0有且只有一個公共點,則符合要求的直線l的條數(shù)為(
)條A.0 B.1 C.2 D.3【答案】D【解析】當(dāng)直線SKIPIF1<0平行于SKIPIF1<0軸(即拋物線的)時,直線SKIPIF1<0與拋物線只有一個公共點,直線SKIPIF1<0與拋物線的軸不平行時,由于SKIPIF1<0在拋物線的外部(與焦點在不同區(qū)域),因此過點有的拋物線的切線有兩條.綜上,符合要求的直線SKIPIF1<0有3條.故選:D.5.(2022·哈爾濱)已知拋物線C的方程為SKIPIF1<0,直線l過定點SKIPIF1<0,若拋物線C與直線l只有一個公共點,求直線l的方程.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【解析】由題意知直線l的斜率存在,設(shè)直線SKIPIF1<0的斜率為k.當(dāng)SKIPIF1<0時,直線l的方程為SKIPIF1<0,此時直線l與拋物線的對稱軸平行,顯然只有一個公共點;當(dāng)SKIPIF1<0時,設(shè)直線l的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因為拋物線C與直線l只有一個公共點,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以直線l的方程為SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.綜上,直線l的方程為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.題組四題組四弦長1.(2022·河南·高三開學(xué)考試(文))過拋物線SKIPIF1<0的焦點SKIPIF1<0的直線SKIPIF1<0交拋物線于SKIPIF1<0兩點,若SKIPIF1<0的中點SKIPIF1<0的橫坐標(biāo)為2,則線段SKIPIF1<0的長為(
)A.4 B.5 C.6 D.7【答案】C【解析】設(shè)點SKIPIF1<0的橫坐標(biāo)分別為SKIPIF1<0,則SKIPIF1<0.由過拋物線的焦點的弦長公式知:SKIPIF1<0.故選:C2(2023·全國·高三專題練習(xí))直線SKIPIF1<0過拋物線SKIPIF1<0的焦點SKIPIF1<0,且與SKIPIF1<0交于SKIPIF1<0兩點,則SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6~9的認(rèn)識(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 2025以買賣合同擔(dān)保
- 2024年秋九年級化學(xué)上冊 第四單元 自然界的水說課稿 (新版)新人教版
- 2023三年級英語上冊 Assessment 3說課稿1 湘少版
- 路基邊坡防滑平臺施工方案
- Unit 4 My tidy bag Lesson 1 I have a big bag (說課稿)-2024-2025學(xué)年粵人版(2024)英語三年級上冊
- 2023八年級地理上冊 第一章 中國的疆域與人口第一節(jié) 中國的疆域說課稿 (新版)湘教版
- 出租代工合同范例
- 2024年六年級品社下冊《我在聯(lián)合國做報告》說課稿3 蘇教版
- 2024年九年級語文上冊 第六單元 第23課《答司馬諫議書》說課稿1 北京課改版
- (康德一診)重慶市2025屆高三高三第一次聯(lián)合診斷檢測 英語試卷(含答案詳解)
- 2025年福建泉州文旅集團招聘24人高頻重點提升(共500題)附帶答案詳解
- 建筑行業(yè)砂石物資運輸方案
- 腫瘤全程管理
- 融資報告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024風(fēng)能發(fā)電系統(tǒng)風(fēng)力發(fā)電場監(jiān)控系統(tǒng)通信第71部分:配置描述語言
- 污泥處置合作合同模板
- 腦梗死的護理查房
- 2025高考數(shù)學(xué)專項復(fù)習(xí):概率與統(tǒng)計的綜合應(yīng)用(十八大題型)含答案
- 2024-2030年中國紫蘇市場深度局勢分析及未來5發(fā)展趨勢報告
評論
0/150
提交評論