版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
橢圓、雙曲線及拋物線考點(diǎn)4年考題考情分析橢圓雙曲線拋物線2023年新高考Ⅰ卷第5題2023年新高考Ⅱ卷第5題2021年新高考Ⅰ卷第5題2021年新高考Ⅰ卷第14題2021年新高考Ⅱ卷第3題2021年新高考Ⅱ卷第13題圓錐曲線會(huì)以單選題、多選題、填空題、解答題4類題型進(jìn)行考查,單選題難度較低或一般,縱觀近幾年的新高考試題,分別考查橢圓的離心率、橢圓中參數(shù)求解、橢圓中最值求解、雙曲線的漸近線方程、拋物線準(zhǔn)線方程及p的求解等知識(shí)點(diǎn),相對(duì)難度不大,是高考沖刺復(fù)習(xí)的重點(diǎn)復(fù)習(xí)內(nèi)容??梢灶A(yù)測(cè)2024年新高考命題方向?qū)⒗^續(xù)以基礎(chǔ)性及中等性等綜合問題展開命題.1.(2023·新高考Ⅰ卷高考真題第5題)設(shè)橢圓SKIPIF1<0的離心率分別為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定的橢圓方程,結(jié)合離心率的意義列式計(jì)算作答.【詳解】由SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:A2.(2023·新高考Ⅱ卷高考真題第5題)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與C交于A,B兩點(diǎn),若SKIPIF1<0面積是SKIPIF1<0面積的2倍,則SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先聯(lián)立直線方程與橢圓方程,利用SKIPIF1<0,求出SKIPIF1<0范圍,再根據(jù)三角形面積比得到關(guān)于SKIPIF1<0的方程,解出即可.【詳解】將直線SKIPIF1<0與橢圓聯(lián)立SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0,因?yàn)橹本€與橢圓相交于SKIPIF1<0點(diǎn),則SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0到SKIPIF1<0距離SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故選:C.3.(2021·新高考Ⅰ卷高考真題第5題)已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為(
)A.13 B.12 C.9 D.6【答案】C【分析】本題通過(guò)利用橢圓定義得到SKIPIF1<0,借助基本不等式SKIPIF1<0即可得到答案.【詳解】由題,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立).故選:C.4.(2021·新高考Ⅰ卷高考真題第14題)已知SKIPIF1<0為坐標(biāo)原點(diǎn),拋物線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),SKIPIF1<0與SKIPIF1<0軸垂直,SKIPIF1<0為SKIPIF1<0軸上一點(diǎn),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的準(zhǔn)線方程為.【答案】SKIPIF1<0【分析】先用坐標(biāo)表示SKIPIF1<0,再根據(jù)向量垂直坐標(biāo)表示列方程,解得SKIPIF1<0,即得結(jié)果.【詳解】拋物線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的焦點(diǎn)SKIPIF1<0,∵P為SKIPIF1<0上一點(diǎn),SKIPIF1<0與SKIPIF1<0軸垂直,所以P的橫坐標(biāo)為SKIPIF1<0,代入拋物線方程求得P的縱坐標(biāo)為SKIPIF1<0,不妨設(shè)SKIPIF1<0,因?yàn)镼為SKIPIF1<0軸上一點(diǎn),且SKIPIF1<0,所以Q在F的右側(cè),又SKIPIF1<0,SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0故答案為:SKIPIF1<0.【點(diǎn)睛】利用向量數(shù)量積處理垂直關(guān)系是本題關(guān)鍵.5.(2021·新高考Ⅱ卷高考真題第3題)拋物線SKIPIF1<0的焦點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.SKIPIF1<0 D.4【答案】B【分析】首先確定拋物線的焦點(diǎn)坐標(biāo),然后結(jié)合點(diǎn)到直線距離公式可得SKIPIF1<0的值.【詳解】拋物線的焦點(diǎn)坐標(biāo)為SKIPIF1<0,其到直線SKIPIF1<0的距離:SKIPIF1<0,解得:SKIPIF1<0(SKIPIF1<0舍去).故選:B.6.(2021·新高考Ⅱ卷高考真題第13題)若雙曲線SKIPIF1<0的離心率為2,則此雙曲線的漸近線方程.【答案】SKIPIF1<0【分析】根據(jù)離心率得出SKIPIF1<0,結(jié)合SKIPIF1<0得出SKIPIF1<0關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故此雙曲線的漸近線方程為SKIPIF1<0.故答案為:SKIPIF1<0.橢圓離心率SKIPIF1<0,SKIPIF1<0雙曲線離心率SKIPIF1<0,SKIPIF1<0已知棚圓方程為SKIPIF1<0,兩焦點(diǎn)分別為SKIPIF1<0,設(shè)焦點(diǎn)三角形SKIPIF1<0,SKIPIF1<0,則橢圓的離心率SKIPIF1<04.已知雙曲線方程為SKIPIF1<0兩焦點(diǎn)分別為SKIPIF1<0,設(shè)焦點(diǎn)三角形SKIPIF1<0SKIPIF1<0,則SKIPIF1<05.點(diǎn)SKIPIF1<0是橢圓的焦點(diǎn),過(guò)SKIPIF1<0的弦SKIPIF1<0與橢圓焦點(diǎn)所在軸的夾角為SKIPIF1<0為直線SKIPIF1<0的斜率,且.SKIPIF1<0,則SKIPIF1<0當(dāng)曲線焦點(diǎn)在SKIPIF1<0軸上時(shí),SKIPIF1<0注:SKIPIF1<0或者SKIPIF1<0而不是SKIPIF1<0或SKIPIF1<0點(diǎn)SKIPIF1<0是雙曲線焦點(diǎn),過(guò)SKIPIF1<0弦SKIPIF1<0與雙曲線焦點(diǎn)所在軸夾角為SKIPIF1<0為直線SKIPIF1<0斜率,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,當(dāng)曲線焦點(diǎn)在SKIPIF1<0軸上時(shí),SKIPIF1<0注:SKIPIF1<0或者SKIPIF1<0而不是SKIPIF1<0或SKIPIF1<0橢圓焦點(diǎn)三角形的面積公式(橢圓上一點(diǎn)與兩焦點(diǎn)組成的三角形叫做焦點(diǎn)三角形)SKIPIF1<0SKIPIF1<0雙曲線焦點(diǎn)三角形面積公式:SKIPIF1<0拋物線(焦點(diǎn)在x軸上)焦點(diǎn)弦相關(guān)結(jié)論,直線A,B過(guò)拋物線(焦點(diǎn)在x軸上)焦點(diǎn)與拋物線交于A,B兩點(diǎn),設(shè)SKIPIF1<0,有SKIPIF1<01.(2024·山東濰坊·一模)已知拋物線SKIPIF1<0SKIPIF1<0上點(diǎn)SKIPIF1<0的縱坐標(biāo)為1,則SKIPIF1<0到SKIPIF1<0的焦點(diǎn)的距離為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】首先求出拋物線的準(zhǔn)線方程,再根據(jù)拋物線的定義計(jì)算可得.【詳解】拋物線SKIPIF1<0SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,又點(diǎn)SKIPIF1<0在拋物線上且縱坐標(biāo)為SKIPIF1<0,所以點(diǎn)SKIPIF1<0到SKIPIF1<0的焦點(diǎn)的距離為SKIPIF1<0.故選:B2.(2024·江蘇徐州·一模)若拋物線SKIPIF1<0上的動(dòng)點(diǎn)到其焦點(diǎn)的距離的最小值為1,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.2 D.4【答案】C【分析】利用拋物線的定義及拋物線的方程的性質(zhì)即可求解.【詳解】由SKIPIF1<0,得焦點(diǎn)SKIPIF1<0,設(shè)拋物線上一點(diǎn)SKIPIF1<0,則由拋物線的定義知,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2024·廣東·一模)雙曲線SKIPIF1<0的頂點(diǎn)到其漸近線的距離為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】求出雙曲線的頂點(diǎn)坐標(biāo)及漸近線的方程,再利用點(diǎn)到直線的距離公式計(jì)算即可.【詳解】依題意,雙曲線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0,漸近線方程為SKIPIF1<0,所以雙曲線SKIPIF1<0的頂點(diǎn)到其漸近線的距離為SKIPIF1<0.故選:C4.(2024·安徽合肥·一模)雙曲線SKIPIF1<0的焦距為4,則SKIPIF1<0的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)雙曲線方程以及焦距可得SKIPIF1<0,可得漸近線方程.【詳解】由焦距為4可得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0;則SKIPIF1<0的漸近線方程為SKIPIF1<0.故選:B5.(2024·浙江·二模)雙曲線SKIPIF1<0的離心率e的可能取值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】A【分析】由題得到SKIPIF1<0或SKIPIF1<0,再利用離心率SKIPIF1<0,即可求出結(jié)果.【詳解】由SKIPIF1<0,得到SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,雙曲線SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A.6.(2024·湖南·二模)若橢圓SKIPIF1<0的焦距為2,則該橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【分析】分SKIPIF1<0與SKIPIF1<0兩種情況,結(jié)合焦距得到方程,求出SKIPIF1<0,得到離心率.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,則離心率為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,則離心率為SKIPIF1<0.故選:C7.(2024·湖南·二模)已知SKIPIF1<0為雙曲線SKIPIF1<0上一動(dòng)點(diǎn),則SKIPIF1<0到點(diǎn)SKIPIF1<0和到直線SKIPIF1<0的距離之比為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【分析】在雙曲線上任取點(diǎn)SKIPIF1<0,則SKIPIF1<0,利用兩點(diǎn)之間距離公式和點(diǎn)到直線距離公式計(jì)算化簡(jiǎn)即得.【詳解】在雙曲線上任一點(diǎn)SKIPIF1<0,則SKIPIF1<0,則點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0和到直線SKIPIF1<0的距離之比為:SKIPIF1<0故選:C.8.(2024·浙江溫州·一模)動(dòng)點(diǎn)SKIPIF1<0到定點(diǎn)SKIPIF1<0的距離與SKIPIF1<0到定直線SKIPIF1<0:SKIPIF1<0的距離的比等于SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)距離公式即可化簡(jiǎn)求解.【詳解】根據(jù)題意可得SKIPIF1<0,平方化簡(jiǎn)可得SKIPIF1<0,進(jìn)而得SKIPIF1<0,故選:A9.(2024·福建漳州·一模)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,A,SKIPIF1<0是拋物線SKIPIF1<0上關(guān)于其對(duì)稱軸對(duì)稱的兩點(diǎn),若SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),則點(diǎn)A的橫坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0,根據(jù)向量垂直列式求解即可.【詳解】由題意可知:SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即點(diǎn)A的橫坐標(biāo)為SKIPIF1<0.故選:B.10.(2024·江蘇·一模)在平面直角坐標(biāo)系SKIPIF1<0中,已知SKIPIF1<0為雙曲線SKIPIF1<0的右頂點(diǎn),以SKIPIF1<0為直徑的圓與SKIPIF1<0的一條漸近線交于另一點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】B【分析】由漸近線方程和SKIPIF1<0⊥SKIPIF1<0求出SKIPIF1<0,由勾股定理得到SKIPIF1<0,從而求出離心率.【詳解】由題意得,SKIPIF1<0⊥SKIPIF1<0,雙曲線的一條漸近線方程為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由勾股定理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故選:B.11.(2024·云南紅河·二模)已知雙曲線SKIPIF1<0的實(shí)軸長(zhǎng)等于虛軸長(zhǎng)的2倍,則SKIPIF1<0的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先確定雙曲線SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,從而得到實(shí)軸長(zhǎng)等于虛軸長(zhǎng)的2倍得到方程,求出漸近線方程.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故雙曲線SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,因?yàn)閷?shí)軸長(zhǎng)等于虛軸長(zhǎng)的2倍,故SKIPIF1<0,解得SKIPIF1<0,故雙曲線方程為SKIPIF1<0,所以SKIPIF1<0的漸近線方程為SKIPIF1<0.故選:C.12.(2024·重慶·模擬預(yù)測(cè))若橢圓SKIPIF1<0:SKIPIF1<0與雙曲線SKIPIF1<0:SKIPIF1<0的離心率之和為SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【分析】分別求出橢圓和雙曲線的離心率,由兩者的離心率之和為SKIPIF1<0,解方程即可得出答案.【詳解】橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,雙曲線SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.故選:A.13.(2024·廣東廣州·一模)設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的右頂點(diǎn)和上焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】求出點(diǎn)SKIPIF1<0的坐標(biāo),借助向量坐標(biāo)運(yùn)算求出點(diǎn)SKIPIF1<0坐標(biāo),代入橢圓方程求解即得.【詳解】令橢圓半焦距為c,依題意,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,而點(diǎn)SKIPIF1<0在橢圓上,于是SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的離心率為SKIPIF1<0.故選:A14.(2024·山東聊城·一模)設(shè)SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0是SKIPIF1<0上的一點(diǎn),若SKIPIF1<0的一條漸近線的傾斜角為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的焦距等于(
)A.1 B.SKIPIF1<0 C.2 D.4【答案】D【分析】借助雙曲線的定義與漸近線方程計(jì)算即可得.【詳解】由漸近線的傾斜角為SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.故選:D.15.(2024·福建泉州·模擬預(yù)測(cè))已知圓錐SO的軸截面是邊長(zhǎng)為2的正三角形,過(guò)其底面圓周上一點(diǎn)A作平面SKIPIF1<0,若SKIPIF1<0截圓錐SO得到的截口曲線為橢圓,則該橢圓的長(zhǎng)軸長(zhǎng)的最小值為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】C【分析】根據(jù)題意,得到該橢圓的長(zhǎng)軸垂直于母線時(shí),此時(shí)橢圓的長(zhǎng)軸取得最小值,即可求解.【詳解】如圖所示,當(dāng)該橢圓的長(zhǎng)軸垂直于母線時(shí),此時(shí)橢圓的長(zhǎng)軸取得最小值,且最小值為邊長(zhǎng)為2的正三角形的高,即SKIPIF1<0.故選:C.16.(2024·河北滄州·一模)已知雙曲線SKIPIF1<0的一條漸近線的傾斜角為SKIPIF1<0,其焦點(diǎn)到漸近線的距離為2,則SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可得SKIPIF1<0及漸近線方程,再根據(jù)焦點(diǎn)到漸近線的距離及SKIPIF1<0求出SKIPIF1<0即可得解.【詳解】由題意可得SKIPIF1<0,所以SKIPIF1<0,雙曲線的漸近線方程為SKIPIF1<0,即SKIPIF1<0,焦點(diǎn)SKIPIF1<0到漸近線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0.故選:B.17.(2024·江蘇南通·二模)設(shè)拋物線SKIPIF1<0的焦點(diǎn)為F,C的準(zhǔn)線與x軸交于點(diǎn)A,過(guò)A的直線與C在第一象限的交點(diǎn)為M,N,且SKIPIF1<0,則直線MN的斜率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意可設(shè)SKIPIF1<0直線方程為SKIPIF1<0,聯(lián)立直線與拋物線方程,通過(guò)根與系數(shù)的關(guān)系及拋物線的焦半徑公式,建立方程,即可求解,【詳解】根據(jù)題意可得拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,則有SKIPIF1<0,設(shè)SKIPIF1<0直線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0到準(zhǔn)線距離為SKIPIF1<0,SKIPIF1<0到準(zhǔn)線距離為SKIPIF1<0,又SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0.故選:A18.(2024·云南·一模)已知雙曲線SKIPIF1<0的左?右焦點(diǎn)分別是SKIPIF1<0是SKIPIF1<0右支上的一點(diǎn).若SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】借助雙曲線定義及余弦定理計(jì)算即可得.【詳解】由雙曲線定義可得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.故選:D.
19.(2024·河北·一模)已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,P為C上一點(diǎn),滿足SKIPIF1<0,以C的短軸為直徑作圓O,截直線SKIPIF1<0的弦長(zhǎng)為SKIPIF1<0,則C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)圓的弦長(zhǎng)公式可得SKIPIF1<0,進(jìn)而根據(jù)平行關(guān)系可得SKIPIF1<0,利用橢圓定義以及勾股定理即可求解.【詳解】過(guò)SKIPIF1<0作SKIPIF1<0,由于圓O截直線SKIPIF1<0的弦長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,結(jié)合SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,故選:A20.(2024·安徽池州·二模)已知圓SKIPIF1<0和兩點(diǎn)SKIPIF1<0為圓SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),記以SKIPIF1<0為直徑的圓為圓SKIPIF1<0,以SKIPIF1<0為直徑的圓為圓SKIPIF1<0,則下列說(shuō)法一定正確的是(
)A.若圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,則圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切B.若圓SKIPIF1<0與圓SKIPIF1<0外切,則圓SKIPIF1<0與圓SKIPIF1<0外切C.若SKIPIF1<0,且圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,則點(diǎn)SKIPIF1<0的軌跡為橢圓D.若SKIPIF1<0,且圓SKIPIF1<0與圓SKIPIF1<0外切,則點(diǎn)SKIPIF1<0的軌跡為雙曲線【答案】C【分析】先證明當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,圓SKIPIF1<0與圓SKIPIF1<0外切;若SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0外切,圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,從而A和B錯(cuò)誤;然后當(dāng)SKIPIF1<0時(shí),將條件變?yōu)镾KIPIF1<0,從而根據(jù)橢圓定義知點(diǎn)SKIPIF1<0的軌跡為橢圓,C正確;當(dāng)SKIPIF1<0時(shí),將條件變?yōu)镾KIPIF1<0,從而根據(jù)雙曲線定義知點(diǎn)SKIPIF1<0的軌跡為雙曲線的左支,D錯(cuò)誤.【詳解】我們分別記SKIPIF1<0的中點(diǎn)為SKIPIF1<0,顯然SKIPIF1<0是SKIPIF1<0的中點(diǎn),故SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在圓SKIPIF1<0內(nèi),此時(shí),圓SKIPIF1<0和圓SKIPIF1<0不可能與圓SKIPIF1<0外切,而圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切等價(jià)于SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理,圓與圓SKIPIF1<0內(nèi)切也等價(jià)于SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在圓SKIPIF1<0外,故“圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切”和“圓SKIPIF1<0與圓SKIPIF1<0外切”分別等價(jià)于SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0.所以,此時(shí)“圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切”和“圓SKIPIF1<0與圓SKIPIF1<0外切”分別等價(jià)于SKIPIF1<0和SKIPIF1<0,同理,“圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切”和“圓SKIPIF1<0與圓SKIPIF1<0外切”分別等價(jià)于SKIPIF1<0和SKIPIF1<0.下面考慮四個(gè)選項(xiàng)(我們沒有考慮SKIPIF1<0的情況,因?yàn)椴恍枰治龃朔N情況也可判斷所有選項(xiàng)的正確性):由于當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切,圓SKIPIF1<0與圓SKIPIF1<0外切;若SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0外切,圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切.這分別構(gòu)成A選項(xiàng)和B選項(xiàng)的反例,故A和B錯(cuò)誤;若SKIPIF1<0,則SKIPIF1<0,此時(shí)“圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切”和“圓SKIPIF1<0與圓SKIPIF1<0內(nèi)切”都等價(jià)于SKIPIF1<0,而根據(jù)橢圓定義,SKIPIF1<0對(duì)應(yīng)的軌跡即為SKIPIF1<0,C正確;若SKIPIF1<0,則SKIPIF1<0,此時(shí)“圓SKIPIF1<0與圓SKIPIF1<0外切”等價(jià)于SKIPIF1<0,而根據(jù)雙曲線定義,SKIPIF1<0對(duì)應(yīng)的軌跡為SKIPIF1<0,僅僅是雙曲線的半支,D錯(cuò)誤.故選:C.21.(2024·遼寧·一模)已知SKIPIF1<0為橢圓SKIPIF1<0的右焦點(diǎn),過(guò)原點(diǎn)的直線與SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0軸,若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)軸長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)橢圓的對(duì)稱性可知,SKIPIF1<0就是SKIPIF1<0到橢圓左焦點(diǎn)的距離;再根據(jù)橢圓的定義和“焦點(diǎn)三角形”求SKIPIF1<0的值.【詳解】設(shè)SKIPIF1<0,如圖,記SKIPIF1<0為SKIPIF1<0的左焦點(diǎn),連接SKIPIF1<0,則由橢圓的對(duì)稱性可知SKIPIF1<0,由SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0軸,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.故選:B22.(2024·遼寧·一模)已知雙曲線SKIPIF1<0的下焦點(diǎn)和上焦點(diǎn)分別為SKIPIF1<0,直線SKIPIF1<0與C交于A,B兩點(diǎn),若SKIPIF1<0面積是SKIPIF1<0面積的4倍,則SKIPIF1<0(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)三角形面積比轉(zhuǎn)化為焦點(diǎn)到直線SKIPIF1<0的距離之比即可得解.【詳解】由SKIPIF1<0可知,SKIPIF1<0,聯(lián)立SKIPIF1<0,消元得:SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0面積是SKIPIF1<0面積的4倍可知,SKIPIF1<0到直線SKIPIF1<0的距離是SKIPIF1<0到直線SKIPIF1<0距離的4倍,即SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故選:D23.(2024·遼寧·模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,則滿足SKIPIF1<0的點(diǎn)SKIPIF1<0的個(gè)數(shù)為(
)A.1 B.2 C.3 D.4【答案】B【分析】設(shè)SKIPIF1<0,由題設(shè)可得坐標(biāo)的方程組,求出其解后可判斷SKIPIF1<0的個(gè)數(shù).【詳解】由橢圓SKIPIF1<0可得半焦距SKIPIF1<0,故SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,故滿足條件的SKIPIF1<0的個(gè)數(shù)為2,故選:B.24.(2024·廣東·模擬預(yù)測(cè))拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過(guò)SKIPIF1<0的直線交拋物線于A,B兩點(diǎn).則SKIPIF1<0的最小值為(
)A.6 B.7 C.8 D.9【答案】D【分析】利用拋物線的焦點(diǎn)弦性質(zhì)結(jié)合基本不等式計(jì)算即可.【詳解】由題意可知SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,聯(lián)立直線SKIPIF1<0與拋物線方程SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得等號(hào).故選:D25.(2024·廣東·一模)已知O為雙曲線C的中心,F(xiàn)為雙曲線C的一個(gè)焦點(diǎn),且C上存在點(diǎn)A,使得SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.7【答案】C【分析】解三角形求出SKIPIF1<0,根據(jù)雙曲線的定義建立方程即可得解.【詳解】不妨設(shè)雙曲線焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,另一個(gè)焦點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為直角三角形,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以由余弦定理可得SKIPIF1<0,所以SKIPIF1<0,由雙曲線定義可得,SKIPIF1<0,所以SKIPIF1<0.故選:C26.(2024·河北邯鄲·三模)已知拋物線SKIPIF1<0的焦點(diǎn)為F,SKIPIF1<0為拋物線上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,則SKIPIF1<0周長(zhǎng)的最小值為(
)A.13 B.14 C.15 D.16【答案】A【分析】過(guò)SKIPIF1<0及SKIPIF1<0作準(zhǔn)線的垂線,利用拋物線定義把周長(zhǎng)問題轉(zhuǎn)化為SKIPIF1<0的最小值問題,利用三點(diǎn)共線時(shí)距離和最小求解即可.【詳解】由題知SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0.如圖,過(guò)SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,過(guò)SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)SKIPIF1<0,當(dāng)SKIPIF1<0為SKIPIF1<0與拋物線的交點(diǎn)SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0周長(zhǎng)的最小值為13.故選:A27.(2024·廣東佛山·二模)2020年12月17日,嫦娥五號(hào)的返回器攜帶1731克月球樣本成功返回地球,我國(guó)成為第三個(gè)實(shí)現(xiàn)月球采樣返回的國(guó)家,中國(guó)人朝著成功登月又邁進(jìn)了重要一步.下圖展示了嫦娥五號(hào)采樣返回器從地球表面附近運(yùn)行到月球表面附近的大致過(guò)程.點(diǎn)SKIPIF1<0表示地球中心,點(diǎn)SKIPIF1<0表示月球中心.嫦娥五號(hào)采樣返回器先沿近地球表面軌道作圓周運(yùn)動(dòng),軌道半徑約為地球半徑.在地球表面附近的點(diǎn)SKIPIF1<0處沿圓SKIPIF1<0的切線方向加速變軌后,改為沿橢圓軌道SKIPIF1<0運(yùn)行,并且點(diǎn)SKIPIF1<0為該橢圓的一個(gè)焦點(diǎn).一段時(shí)間后,再在近月球表面附近的點(diǎn)SKIPIF1<0處減速變軌作圓周運(yùn)動(dòng),此時(shí)軌道半徑約為月球半徑.已知月球中心與地球中心之間距離約為月球半徑的222倍,地球半徑約為月球半徑的3.7倍.則橢圓軌道SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度PVC管材智能化制造技術(shù)合作合同
- 二零二五年度智慧交通系統(tǒng)設(shè)計(jì)合同3篇
- 二零二五年度文化教育節(jié)目制作合作協(xié)議3篇
- 2025年度新型建筑材料供貨與施工監(jiān)理合同
- 二零二五年度辦公樓租賃合同租賃物租賃用途與使用規(guī)范
- 海南外國(guó)語(yǔ)職業(yè)學(xué)院《影視創(chuàng)作與剪輯》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度智慧社區(qū)廣告安裝與智慧家居服務(wù)協(xié)議3篇
- 脫硫塔課程設(shè)計(jì)三視圖
- 瑜伽筋膜伸展課程設(shè)計(jì)
- 落葉漚肥課程設(shè)計(jì)思路
- 《鋰離子電池用二氟草酸硼酸鋰》
- 【MOOC】《形勢(shì)與政策》(北京科技大學(xué))中國(guó)大學(xué)MOOC慕課答案
- 中學(xué)生心理健康教育主題班會(huì)課件
- 稅務(wù)新政策培訓(xùn)
- 2024-2030年中國(guó)第三方檢測(cè)認(rèn)證行業(yè)發(fā)展創(chuàng)新模式及投資規(guī)劃分析報(bào)告版
- 《礦山隱蔽致災(zāi)因素普查規(guī)范》解讀培訓(xùn)
- 骨折病中醫(yī)護(hù)理常規(guī)
- 大型活動(dòng)車輛調(diào)度管理方案
- 房屋永久居住權(quán)合同范本
- 浙江省寧波市慈溪市2023-2024學(xué)年高二上學(xué)期期末考試 歷史 含解析
- 智慧農(nóng)業(yè)行業(yè)營(yíng)銷策略方案
評(píng)論
0/150
提交評(píng)論