版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Contentslistsavailableat
ScienceDirect
ExpertSystemsWithApplications
journalhomepage:
/locate/eswa
ExpertSystemsWithApplications225(2023)120151
Maximumflowaccelerationbytraversingtreebasedtwo-boundarygraph contraction
WeiWei
a
,
b
,PengpengWang
a
,
b
,YaboDong
c
,
?
aKeyLaboratoryofGrainInformationProcessingandControl(HenanUniversityofTechnology),MinistryofEducation,Zhengzhou450001,China
bHenanProvincialKeyLaboratoryofGrainPhotoelectricDetectionandControl,HenanUniversityofTechnology,Zhengzhou450001,China
cCollegeofcomputerscienceandtechnology,ZhejiangUniversity,Hangzhou310027,China
ARTICLEINFO ABSTRACT
Keywords:
Tree-cutmappingBoundarynodeMaximumflowGraphcontractionOverlay
Themaximumflow(max-flow)problemissofundamentalthatthecorrespondingalgorithmshavemanyapplicationsinmanyscenarios.Acommonaccelerationstrategyistoreducegraphsizebycontractingsubgraphs,buttherearefewcandidatesubgraphswithnosizelimitthatcanguaranteeexactmax-flowsolutionsaftercontraction.Weaddanewsubgraphcontractionconditiontotheexistingconditionswithcorrespondingefficientlocatingalgorithm,andweproposeamax-flowaccelerationalgorithmusingtraversingtree-basedcontraction(TTCMax).TTCMaxcanworkefficientlyonlybyusingconnectivityinformation.Throughdepth-firsttraversing,itcancontracttwo-boundarygraphsofanysizeintoedges,andthenaccelerateexistingmax-flowalgorithmsusingcontractedgraphs.Large-scalerandomandreal-worldgraphexperimentstestitseffectandtheaccelerationratiocanbemorethan50timeswithlowgraphreductionoverhead,indicatingthattheproposedalgorithmcanbeusedasaneffectivecomplementtoexistingalgorithms.
Introduction
Asafundamentalandwidelyinvestigatedproblem,themaximumflow(max-flow)problemanditsdualproblem,theminimumcut(min-cut)problemhavemanyapplicationsandareoftenusedassubroutinesinotheralgorithms(
Sherman
,
2009
).Manyadvanceshavebeenmade
in
thedevelopmentofefficientalgorithmsforthisproblem(
Goldberg
&Rao
,
1998
).Fastsolutionscanbefoundthroughalgorithm-orientedacceleration(
Boykov&Kolmogorov
,
2004
;
Goldberg&Tarjan
,
2014
;
Verma&Dhruv
,
2012
),orgraphdata-orientedacceleration(
Gusfield
,
1990
;
Wei,Liu,&Zhang
,
2018
;
Zhang,Hua,Jiang,Zhang,&Chen
,
2011
;
Zhang,Xu,Hua,&Zhao
,
2012
;
Zhao,Su,Liu,&Zhang
,
2014
;
Zhao,Xu,Hua,&Zhang
,
2012
).Asfordata-orientedalgorithms,thecoreideaistoreducethesizeoftheinput,suchasreducingthesizeofthegraphbycontractingsubgraphstonodes.Therearemanycontraction-basedalgorithmsthatexploitvarioussubgraphcontractionconditions.Unfortunately,mostofthesealgorithmscanonlyobtainapproximatedvaluewhenusingsubgraphcontractionconditionwithnosizelimit.
Inthepaper,weproposealosslessalgorithmthatemploysasub-graphcontractionconditionwithnosizelimit,andatoyexampleisgivenin
Fig.
1
toclarifythedifferencebetweentheproposedmethodandexistingcontraction-basedmethods.Unlikeexistingnode-orientedcontractions,theproposedalgorithmcontractssubgraphsintoedges.
Thecorepartisaroutinethatcanefficientlysearchforthetwo-boundarygraph(TBG),thatis,thesubgraphcontainingtwoboundarynodesthatseparateitfromotherpartsofthewholegraph.Experimentsvalidateitseffectivenessbyusinglarge-scalegraphscontainingupto107nodes.
Theworkadvancesthestateoftheartbyintroducinganewlosslessandgeneralsize-freecontractionconditionwithahighlyefficientwaytolocatethecorrespondingsubgraphs.Specifically,thetheoreticalcon-tributionsinclude:(a)Weprovethatthecontractionoftwo-boundarygraphscanmaintaintheexactmax-flowresult,whichleadstothecontractionalgorithmthathasfewconstraints(e.g.,unlimitedsubgraphsize)andcanensureaccuratesolution.Theseconditionshavehardlybeenmetsimultaneouslybefore.(b)Tofindthetwo-boundarygraph,weproposetousethemappingbetweenthedepth-firsttraversaltreeandthenodecutset(NCS).ThemethodcanefficientlysearchfortheNCScontainingonlytwonodes(i.e.,twonodesoftheboundedgraph).
(c)WeproposethestrategyofselectingallreusableTBGsforagivennodepair.
Inaddition,thepracticalcontributionsare:(a)Toensurealgorithmgenerality,weproposetoidentifythebi-connectedcomponent(BCC)firstandthenTBGineachBCC,toensurealgorithmgenerality.SinceTBGpartiallyoverlapswithsomeexistingandinefficientsubgraph
?Correspondingauthor.
E-mailaddresses:
weiwei_ise@
(W.Wei),
wangpengpeng_do@
(P.Wang),
dongyb@
(Y.Dong).
/10.1016/j.eswa.2023.120151
Received10June2022;Receivedinrevisedform11March2023;Accepted12April2023
Availableonline20April2023
0957-4174/?2023ElsevierLtd.Allrightsreserved.
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
2
Fig.1.ExamplesshowingthedifferencebetweenTTCMaxandexistingcontractionalgorithms(usedinSection
1
).
contractionconditions,itcannotbeapplieddirectly.(b)Toensurealgo-rithmefficiencyandavoidthehighcomplexityofenumeratingTBGs,weintroducealowcomplexityrandomsearchalgorithm,whichcanhelpfindenoughTBGsforaccelerationatasmallcost.Experimentalresultsshowthatthealgorithmcanaccelerateexistingalgorithmsingeneratedgraphfamiliesandreal-worldgraphs,whiletheaccelerationratiocanbeuptotwoordersofmagnitude,andthuscanbeusedasaneffectivecomplementtoexistingalgorithms.
Literaturereview
Classicaccelerationattemptsmainlyfocusedonalgorithmtuning.Existingalgorithmsevolveintwodirections:theaugmentingpath-basedalgorithms(
Jack&Richard
,
1972
)andpreflow-basedalgo-rithms(
Goldberg&Tarjan
,
1988
).Theaugmentingpath-basedalgo-rithmsfocusonhowtofindasuitablepathbetweensourceandsinknodesineachiterationofmax-flowcomputation,sothatthewholecomputationcanbeefficientlyaccelerated.
JackandRichard
(
1972
)
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
providedselectionrulesthatcanhelpavoidimproperselectionofaugmentingpathsleadingtoseverecomputationaldifficulties.Anewalgorithmusingtheshortestaugmentingpathwasproposed.
Karzanov
(
1974
)explicitlyintroducedtheblockingflowmethod,whichaug-mentedalongamaximumsetofshortestpathsbyfindingablockingflow.Suchaugmentationincreasedtheshortestaugmentingpathlengthandthusacceleratedtheshortestaugmentingpathmethod.Unlikeaug-mentingpath-basedmethods,push-relabel-basedmethodsmaintainedapreflowanditerativelyappliedpushoperationstoupdatethepreflow,
and
usedrelabeloperationstoupdatenodedistances(
Goldberg&
Tarjan
,
1988
).Here,apreflowisdifferentfromaflowinthatthetotalamountflowingintoanodecantemporarilyexceedthetotalamountflowingout,andtheproposedalgorithmpushesthelocalflowexcesstowardsthesinkalongtheestimatedshortestpath.
Inadditiontotuningalgorithmsthatkeepexactmax-flowvalues,
there
isalsoresearchintotradingaccuracyforspeed.
Christiano,Kel-
ner,Madry,Spielman,andTeng
(
2011
)proposedanewapproximationalgorithmforthemax-flowproblem.Bysolvingalistofelectricalflowproblemswiththesolutionofalinearequationsystem,thealgorithmcanbefasterthantheprevious??(??3∕2)algorithms.
Sherman
(
2013
)proposedanewalgorithmusing??-congestion-approximators.Theal-gorithmmaintainedanarbitraryflowthatmayhavesomeresidualexcessanddeficits,andittookstepstominimizeapotentialfunctionmeasuringthecongestionofthecurrentflowplusanover-estimate
of
thecongestionrequiredtoroutetheresidualdemand.
Jonathan,
YinTat,Lorenzo,andAaron
(
2014
)introducedanewframeworkforapproximatelysolvingflowproblemsandappliedittoprovideasymptoticallyfasteralgorithmsformax-flowandmaximumconcur-rentmulti-commodityflowproblems.Thetechniquestheyusedareanon-Euclideangeneralizationofgradientdescentwithboundsonitsperformance,thedefinitionandefficientconstructionofanewtypeofflowsparsifier,andafastobliviousroutingschemeforflowproblems.
Anothermajorcategoryofmax-flowaccelerationalgorithmisbasedonpreprocessing,i.e.,reducingthegraphsizeforacceleration.Specialsubgraphsarecontractedtohelpreducethesizeofthegraph,butcanalsocauseachangeinthemax-flowvaluebetweennodepairs.Therearemanydifferentsubgraphcontractionconditionsthatcanbeusedtocontractthegraph.Thefirsttypeofcontractionconditionistomaintainthemax-flowvaluesintheoriginalgraph.
ScheuermannandRosenhahn
(
2011
)proposedanalgorithmforimagesegmentation,andthebasicideaistosimplifytheoriginalgraphwhilemaintainingthemax-flowproperties.ThealgorithmconstructsaSlimGraphbymergingnodesthatareconnectedbysimpleedges,andtheresultingslimGraphcanbeappliedwithstandardmax-flowalgorithms.
LiersandPardella
(
2011
)presentedflow-conservingconditionsunderwhichsubgraphscanbecontractedtoasinglenode.Aftercapacitynormalization,thealgorithmattemptedtoshrinkthemaxedgeamongalledgesbetweentwonodes,orbetweenthreenodes,orbetweenaspecialclusterofnodes.Basedontheconditions,theresearchersalsoproposedatwo-stepmax-flowalgorithmtosolvetheprobleminstancesfromphysicsandcomputervision.
Therearealsographcontractionconditionswithnosizelimitthatcansignificantlyreducethegraphsizebutattheexpenseofchangedmax-flowvalues.
Zhangetal.
(
2011
)examinedthegraphcontractionconditionofmaximalclique.Bycontractingtheappropriatemaximumcliqueinthenetwork,thealgorithmcanapproximatethemax-flowresultefficiently.
Zhangetal.
(
2012
)leveragedthegraphcommunityforacceleration.Thecommunitydetectionalgorithmisappliedto
detectallcommunitiesinanetwork,wherethesourceandsinknodes
wereestablishedtofindneighbor-node-setastocontracttheoriginalgraphformax-flowacceleration.
Existingresearchhasalsoacceleratedmax-flowcalculationbycon-structingahigh-leveloverlay.Theoverlaypathcanhelpaccelerateordirectlyobtainmax-flowresults.Awell-knownoverlayistheGomory–Hutree(
Gusfield
,
1990
).Itisbuiltbyorganizingallthe??nodesoftheoriginalgraphintoatree,andtheminimumedgecapacityinthepathbetweenanytwonodesisthemax-flowvaluebetweenthem.TheGomory–Hutreeisnotwidelyusedduetoitshighcomplexity,e.g.,it
needs
???1max-flowcalculationtobuildaGomory–Hutree.
Zhao
etal.
(
2014
)viewedtheoriginalgraphasalayergraphbetweenthesourceandsinknodes,e.g.,nodesatthesamedistancefromthesourcenodeformalayer.Themax-flowvaluecanbecalculatedasthesmallestofallthemax-flowvaluesbetweenadjacentlayers.
Weietal.
(
2018
)attemptedtodividetheoriginalgraphintosubgraphs(i.e.,thebi-connectedcomponent)withcutnodesasboundarynodes.Max-flowcalculationbetweenanygivennodepairinvolvesonlyaportionofcutnodesandsubgraphs,anditcanbedividedintoseveralsub-calculationsbetweenadjacentsubgraphs.
Alltheabovemax-flowcalculationscanbefurtheracceleratedby
algorithm
parallelization(
Baumstark,Blelloch,&Shun
,
2015
;
Jiadong,
Zhengyu,
&Bo
,
2012
;
Khatri,Samar,Behera,etal.
,
2022
).
Khatri
etal.
(
2022
)proposedseveraltechniquestoimprovetheperformanceofthepush-relabelmax-flowalgorithmonGPUs.Theythencombinethepush-relabelalgorithmwiththeirnewlyproposedpull-relabelalgo-rithmtoconstructapull-push-relabelmaxflowalgorithm.Experimentsusingreal-worldandsyntheticgraphsshowitssignificantacceleration
ratio
inthreerepresentativemaximumflowapplications.
Baumstark
etal.
(
2015
)foundthatthewell-knownhighestlabel-basedpush-relabelimplementationisnotoptimalfortheircollectedbenchmarkinstances.Instead,thefirst-in-first-outpush-relabelalgorithmappearstobemoresuitableandisimplementedasasharedmemory-basedparallelalgorithm.Aparallelversionofglobalrelabelingisusedtoimprovespeed.Experimentalresultsshowthesuperiorityofthisalgo-rithmoverthefastestexistingimplementation.
Jiadongetal.
(
2012
)proposedtwoGPU-basedmaximumflowalgorithms,wherethefirstisasynchronousandlockfreeandthesecondissynchronizedviatheprecoloringtechnique.ExperimentalresultsshowthattheGPU-basedalgorithmoutperformstheCPU-basedalgorithmbyaboutthreetimes,andinGPU-basedalgorithms,thesynchronousalgorithmoutperformstheasynchronousalgorithminsomesparsegraphs.
Model
Themax-flowproblem
Themax-flowproblembetweennodes??and??inadirectedgraphisformulatedinEq.(
1
).??isthecollectionofallnodesinthegraph,and
??isthecollectionofalldirectededgesinthegraph.Foradirectededge
??fromnode??to??,denote????≥0asthecapacityof??,and??(??,??)≤????or
| |
??(??)≤????astheamountofflowfrom??to??,themax-flowproblemistofindthemaximumsumofflowoutof??andinto??,asshowninEq.(
1
).Here???(??)={??∈??(??,??)∈??}and??+(??)={??∈??(??,??)∈??}
aretwosetsofadjacentnodesof??.Theconstraintsoftheproblemare:
(∑
(a)theflowvalueoneachedgeshallnotexceedthecapacityoftheedge,and(b)thevalueofallflowsintoanodemustbethesameasthatoutsidethenode.Thesolutionisthemax-flowvalue???(??,??)andtheflowvaluesatalledges.Wemainlyfocusontheprobleminconnectedundirectedgraphs,whichcanberepresentedasdirectedgraphsbytransformingeachundirectededgeintotwodirectededgesbetweenadjacentnodes.
arenotdividedintoanycommunities.Foreachcommunityfoundinthenetwork,thealgorithmwillvalidatethecontractconditionthatthetotalamountflowingintoacommunitycanflowthroughthecommunity,whichwillbecontractedifconditionshold.
Zhaoetal.
???(??,??)=??????
??∈??+(??)
?
??0≤????≤???????∈??(??)
??(??,??))
(1)
(
2012
)examinedthegraphcontractionconditioncalledneighbor-node-set,whichisonenodeplusitsneighboringnodes.Specialconditions
??.??.
3 ??
??∈∑???(??)
??(??,??)=
∑
??∈??+(??)
??(??,??)???∈???{??,??},(??)
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
PAGE
4
Definition3.5.Intheoriginalgraph,TBGcontractionistoreplaceallnodesandedgesintheTBGasanedgebetweenitstwoBNs,andtheedgecapacityisthemax-flowvaluebetweenBNsthroughnodesinsidetheTBG.
TBGcanhelpspeedupmax-flowcalculationbecauseTBGcontrac-tiondoesnotchangethemaximumflowvaluebetweenanynodesoutsidetheTBG.
Lemma3.6.ForaTBG,themax-flowvaluebetweenthenodepairsoutsidetheTBGintheoriginalgraphisthesameasinthegraphwiththecontractedTBG.
Fig.2.AnexampleofTBGdefinedin
Definition
3.4
(Allsolid-linenodesandtheedgesconnectingthemconstituteTBG).
Thebi-connectedcomponenttree
Givenanundirectedgraphof??withthesetofallnodes??andthesetofalledges??,wefirstintroducethecoredefinitionsthatarerelatedtoouralgorithm.Ifnotmentioned,allthegraphsmentionedareundirectedgraphs.
Definition3.1.Acutnodeinagraphisanodewhoseremovalwilldividethegraphintoatleasttwodisconnectedsubgraphs.Bi-connectedcomponent(BCC)isthemaximumconnectedsubgraphinwhichanytwonodeshaveatleasttwodisjointpathsbetweenthem.
NotethatthecutnodeswillsplittheoriginalgraphintoBCCs.Anexampleisshownin
Fig.
4
(a),whereanygraphcanberepresentedasthegraphontheleft,withtheBCCtreeontheright.Itisobviousthatremovinganycutnodewilldisconnectthegraph.IthasbeenfoundthatanygivengraphcanbetransformedintoaBCCtreewithcutnodeconnectingtheseBCCs(
Hopcroft&Tarjan
,
1973
)(asshownontherightof
Fig.
4
(a)):
Theorem3.2.AnyconnectedgraphcanbetransformedintoatreeofBCCs.
Proof.Pleaserefertopaper(
Weietal.
,
2018
).
Thetwo-boundarygraph
Thedefinitionofboundarynodeisintroducedfirst.
Definition3.3. Foraconnectedsubgraph??′in??withnodeset
??′???andedgeset??′???,aboundarynode(BN)of??′isanode
??∈??′thathasatleastoneadjacentnode??′∈?????′.
Inthepaper,wefocusonthekindofsubgraphthatcontainsonlytwoBNs.
Definition3.4.Thetwo-boundarygraph(TBG)isaconnectedsub-graphin??withonlytwoBNs.
AnexampleofTBGisgivenin
Fig.
2
,whereallsolid-linenodes(andtheedgesbetweenthem)constituteTBG.AnyothernodeexceptBNs(nodes1and2)intheTBGiscalledtheinnernode(IN),i.e.,allINsandBNsin
Fig.
2
constituteTBG.AnynodeoutsidetheTBGiscalledtheouternode(ON)oftheTBG.
TBGisusefulbecausebycalculatingthemax-flowvaluebetweenitsBNsinsidetheTBG,wecancontracttheTBGasanedgebetweenitsBNs,andtheedgecapacityisjustthemax-flowvaluebetweenitsBNsinsidetheTBG:
Proof.
Forthemax-flowprobleminanundirectedgraph,itneedstobeconvertedtotheproblemintheequivalentdirectedgraph,thatis,theundirectededgebetweentwonodesisconvertedintotwodirectededgesofthetwonodeswiththesamecapacityastheundirectededgecapacity.Anyin-edgeflowisadirectedflowwiththesamedirectionasthedirectededge.
Denotethemax-flowfrom??to??as???(??,??),giventwonodes??and??
intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatforeachpairofadjacentnodes??and??,onlyoneedgeof(??,??)and(??,??)hasapositiveflowvalueinthefinalmax-flowresult.
Becausethemaximumvaluesofvariousaccuratemaximumflowalgorithmsareconsistent,weuseoneofthecommonlyusedmethods,theaugmentingpath-basedmethod,toillustratetheaboveconclusion.Formax-flowfrom??to??,thecoreideaistofindandfillasimplepathwithpositivevalueflowbetween??and??ineachiterationuntilnofurtherpathcanbefoundaftermanyiterations.Thepathfindingisappliedtotheresidualgraphupdatedineachiteration.Forexample,intheoriginalgraphforthedirectededge(??,??)withitscapacity????(??,??)andflowvalue
????(??,??)afteraniteration,intheresultingresidualgraphtherewillbeanedge(??,??)with??(??,??)=????(??,??)?????(??,??),andanedge(??,??)with??(??,??)=????(??,??)+????(??,??).
Notethatintheaugmentingpath-basedmethod,theresidualcapacityof(??,??)introducedbytheflowonthereverseedgeisusedatfirst,andusingthecapacityofoneedgeintheresidualgraphdecreasestheflowvalueonitsreverseedgeintheoriginalgraph.Thus,inoneiteration,sincethesimplepathallowsnoloopingintheresidualgraph,onlyoneofthetwoedges(??,??)and(??,??)willbeincludedinthesimplepathbetween??and
??.Soafterthefirstiteration,onlyoneedgehasflowintheoriginalgraphandassumethatitisthedirectededge(??,??)withitscapacity????(??,??)andflowvalue????(??,??).Assumingthatinthenextiterationtheedge(??,??)isincludedinthepathwithflow
??(??,??),if????(??,??)≥??(??,??),intheoriginalgraphitwillcausetheflowvalueof(??,??)todecreasei.e.,(??,??)withupdatedflowvalue
????(??,??)???(??,??)and(??,??)withflowvalue0.
Orif????(??,??)<??(??,??),thenintheoriginalgraphtheflowvalueof(??,??)willdecreaseto0andtheflowvalueof(??,??)willbecomepositive??(??,??)?????(??,??).Theresultissimilarifedge(??,??)isselected,i.e.,onlyoneedgeofthetwoedgesbetweentwonodeshasapositiveflowvalueintheupdatedoriginalgraphofeachiteration.
Thus,itisobviousthatintheresultingoriginalgraphofeachiteration(includingthefinalresultgivenbythefinaliteration),onlyoneedgeof(??,??)and(??,??)isusedtoholdtheflow.
Giventwonodes??and??intheequivalentdirectedgraphcorre-spondingtotheundirectedgraph,when???(??,??)isdeployedinthegraph,???(??,??)withthesamemax-flowvaluecanbedeployedinthegraphatthesametime.
Accordingtoitem
(2)
above,thereverseedgeofeachpositive-flowedgeisnotusedinthemax-flowresult.Itisobviousthatfor
eachedge(??,??)withpositiveflowvalue??(??,??)inthemax-flow
Itisclearthat????≤???(??,??)and????≤???(??,??)inanymax-flow
1 12 2 21
resultbetween??and??,bymovingtheflowinedge(??,??)toedge
(??,??)withsameflowvalue(whichisequivalenttoreversingtheinandoutflowsofeachnode),theper-nodeflowconstraints
resultbetween??and??outsidetheTBG.Becauseanydeployed
flowsmustbefeasibletoreachthetargetnode??inthemax-flowresult.Orif????>???(??,??)anditmustflowoutofTBGthrough??2,
? 1 12
inEq.(
1
)alsoholdanditwillgeneratethemax-flowresult??(??,??)
withsamemax-flowvaluefromnodes??to??.Andsinceeachin-edgeflowof???(??,??)sitsatadifferentedgefromitscounterpartin
???(??,??),???(??,??)and???(??,??)onlysharenodesandthustheirflowswillnotaffecteachother,itisclearthat???(??,??)and???(??,??)canbedeployedinthegraphatthesametime.
DenotetheboundarynodeofthegivenTBGas??1and??2.Denotethemax-flowvaluebetween??1and??2as?????????,the
whichwillgenerateanin-edgeflowdistributionwiththetotal
flowvaluebetween??1and??2insideTBGlargerthan???(??1,??2)
and???(??2,??1),whichcontradictsthemax-flowdefinition.
Asaresult,iftheTBGiscontractedastheundirectededge(or
directededgesinbothdirections)between??1and??2withthemax-flowvalue???(??1,??2)==???(??2,??1),theflowsinto??1or??2inthemax-flowresultcanbekeptunchangedandthecapacitylimitis
met,sotheotherpartsofthemax-flowresultarekeptthesame.
???????
(??1,??2)
Inaddition,themax-flowvaluebetween??and??willnotincrease
??(??2,??1)withthesamemax-flowvaluecanbedeployedinthe
TBGatthesametime.
Thisisobviousfromtheitem
(3)
above.
Denotethemax-flowfrom??to??as???(??,??),giventwonodes??and??intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatthereisnocycleflowpathinthe
asthecontractionwillnotgenerateanynewaugmentingpathbetween??and??.Ifthebottleneckedgetofindamoreaug-mentingpathisnotinsidetheTBG,TBGcontractionwillkeeptheotherpartofthemax-flowresultandthebottleneckedgeunchanged,andthusnonewaugmentingpathwillbegenerated.IfthebottleneckedgeisinsidetheTBG,theremustbe????==
max-flowresults.Thatis,intheoriginalgraphthedirectededge
???
1
or??2==???
(??1,??2) 1
(??2,??1)(orTBGcanindependentlyadjustthe
withpositiveflowwillnotformacycle.
Supposethatwhenasimplepathbetween??and??(i.e.,??)isfoundintheresidualgraphinoneiteration,therewillbeacycleflowpathintheupdatedoriginalgraph.Supposeintheoriginalgraphthepathsegmentcontainingtheoverlappednodesinthelooppathandthesimplepathisboundedbynodes??and??.Itisclearthatthereareatleasttwodirectedpathsinreversedirectionswithpositiveflowbetween??and??intheoriginalgraph,anddenotethemas????(??,??)and????(??,??)andsuppose????(??,??)asthepathsegmentinthefoundsimplepathintheresidualgraph,whichisalsothesimplepathintheoriginalgraph.So,beforethesimplepath??isfound,????(??,??)alreadyexistsintheoriginalgraphandthereiscertainlyasimplepathwithresidualcapacitiesbetween??and??intheresidualgraph(i.e.,??(??,??)).Andnotalledgeshaveresidualcapacityinthe????(??,??)appliedintheresidualgraphortherewillbeacycleflowpathbeforethesimplepath
??.Thatis,givenapath??(??,??)withresidualcapacitiesinallitsedges,thealgorithmchoosesthepath????(??,??)withsomeedgesthatdonothaveresidualcapacitiesintheresidualgraph,whichcontradictsthefactthatintheaugmentingpath-basedmethod,residualcapacitywillbeusedfirst.Thus,inthemax-flowresultoftheoriginalgraph,thedirectededgewithpositiveflowwillnotformacycle.
Inthemax-flowresultbetweenanynodepair,??and??outsidea
TBGwithBN??1and??2,representtherespectiveflowvalueintotheTBGthrough??1and??2as????and????,onlyoneof????and????
internalflowtoallowmoreflowthroughtheTBG),sobykeepingtheedgecapacityaftercontractionas???(??1,??2),thecontractionwillnotgenerateanewaugmentingpath.
Asaresult,TBGcontractionwillmaintainthemax-flowresultbeforecontractionandwillnotgenerateanewaugmentingpathtochangethemax-flowresult.
Thelemmaisproved.
Asaresult,formax-flowcalculationbetweenanynodepairoutsidetheTBG,theTBGcanbetreatedasanedgebetweenitsBNs.AndforTBGsthatdonotcontainthegivennodepair,theycanbecontractedonebyonewhilethemax-flowvalueofthenodepairremainsun-changedaftereachcontraction.Thatis,allTBGsthatdonotcontainthegivennodepaircanbecontractedatthesametime.
ItisalsofoundthatfortheTBGinsideaBCC,theremainingportionoftheBCCafterremovingtheTBGisstillaTBG,whichisdefinedastheinverseTBGoftheoriginalTBG:
Lemma3.7.InaBCCwithnodeset???andedgeset???,givenanyTBGinsideitwithnodeset??′????andedgeset??′????withthesetoftwoboundarynodes????.TheBCCportionoutsidetheTBGwithnodeset
??′′=??????′+????andedgeset??′′=??????′isstillaTBGwiththesameBNs.
Proof.BecausethereareatleasttwopathswithoutdisjointingnodesbetweenanytwonodesinaBCC,neighborsaandbofboundarynodes
isgreaterthan0.
1 2 1
2 ??1and??2outsidetheTBGhavepathsthatdonotpassthrough??1and
Thus,ifboth????and????arenotzerointhemax-flowresult,since
??2.Byadding??1and??2andtheiredgeswiththerespectiveneighbors
1 2 ??and??,itwillgenerateapathbetween??1and??2intheBCCportion
theflowintotheTBGfrom??2canonlyexitTBGthrough??1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年臨時員工派遣協(xié)議范本
- 2025年借殼上市交易合作協(xié)議
- 2025年倉儲干果堅果保管合同
- 2025年售房合同解除協(xié)議
- 2025年死因贈與合同的咨詢平臺
- 2025年食堂食材采購與社區(qū)支持農(nóng)業(yè)合同范本大全3篇
- 2025版生物質(zhì)木屑顆粒燃料買賣合同4篇
- 二零二五年度不動產(chǎn)抵押擔保物業(yè)管理合同樣本3篇
- 2025版微股東眾籌入股協(xié)議書-新能源開發(fā)項目專用3篇
- 二零二五年度科研實驗室租賃合同租金調(diào)整與設(shè)備配置補充協(xié)議
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學試卷
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識培訓課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學外來人員出入校門登記表
- 《土地利用規(guī)劃學》完整課件
評論
0/150
提交評論