maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第1頁
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第2頁
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第3頁
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第4頁
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Contentslistsavailableat

ScienceDirect

ExpertSystemsWithApplications

journalhomepage:

/locate/eswa

ExpertSystemsWithApplications225(2023)120151

Maximumflowaccelerationbytraversingtreebasedtwo-boundarygraph contraction

WeiWei

a

,

b

,PengpengWang

a

,

b

,YaboDong

c

,

?

aKeyLaboratoryofGrainInformationProcessingandControl(HenanUniversityofTechnology),MinistryofEducation,Zhengzhou450001,China

bHenanProvincialKeyLaboratoryofGrainPhotoelectricDetectionandControl,HenanUniversityofTechnology,Zhengzhou450001,China

cCollegeofcomputerscienceandtechnology,ZhejiangUniversity,Hangzhou310027,China

ARTICLEINFO ABSTRACT

Keywords:

Tree-cutmappingBoundarynodeMaximumflowGraphcontractionOverlay

Themaximumflow(max-flow)problemissofundamentalthatthecorrespondingalgorithmshavemanyapplicationsinmanyscenarios.Acommonaccelerationstrategyistoreducegraphsizebycontractingsubgraphs,buttherearefewcandidatesubgraphswithnosizelimitthatcanguaranteeexactmax-flowsolutionsaftercontraction.Weaddanewsubgraphcontractionconditiontotheexistingconditionswithcorrespondingefficientlocatingalgorithm,andweproposeamax-flowaccelerationalgorithmusingtraversingtree-basedcontraction(TTCMax).TTCMaxcanworkefficientlyonlybyusingconnectivityinformation.Throughdepth-firsttraversing,itcancontracttwo-boundarygraphsofanysizeintoedges,andthenaccelerateexistingmax-flowalgorithmsusingcontractedgraphs.Large-scalerandomandreal-worldgraphexperimentstestitseffectandtheaccelerationratiocanbemorethan50timeswithlowgraphreductionoverhead,indicatingthattheproposedalgorithmcanbeusedasaneffectivecomplementtoexistingalgorithms.

Introduction

Asafundamentalandwidelyinvestigatedproblem,themaximumflow(max-flow)problemanditsdualproblem,theminimumcut(min-cut)problemhavemanyapplicationsandareoftenusedassubroutinesinotheralgorithms(

Sherman

,

2009

).Manyadvanceshavebeenmade

in

thedevelopmentofefficientalgorithmsforthisproblem(

Goldberg

&Rao

,

1998

).Fastsolutionscanbefoundthroughalgorithm-orientedacceleration(

Boykov&Kolmogorov

,

2004

;

Goldberg&Tarjan

,

2014

;

Verma&Dhruv

,

2012

),orgraphdata-orientedacceleration(

Gusfield

,

1990

;

Wei,Liu,&Zhang

,

2018

;

Zhang,Hua,Jiang,Zhang,&Chen

,

2011

;

Zhang,Xu,Hua,&Zhao

,

2012

;

Zhao,Su,Liu,&Zhang

,

2014

;

Zhao,Xu,Hua,&Zhang

,

2012

).Asfordata-orientedalgorithms,thecoreideaistoreducethesizeoftheinput,suchasreducingthesizeofthegraphbycontractingsubgraphstonodes.Therearemanycontraction-basedalgorithmsthatexploitvarioussubgraphcontractionconditions.Unfortunately,mostofthesealgorithmscanonlyobtainapproximatedvaluewhenusingsubgraphcontractionconditionwithnosizelimit.

Inthepaper,weproposealosslessalgorithmthatemploysasub-graphcontractionconditionwithnosizelimit,andatoyexampleisgivenin

Fig.

1

toclarifythedifferencebetweentheproposedmethodandexistingcontraction-basedmethods.Unlikeexistingnode-orientedcontractions,theproposedalgorithmcontractssubgraphsintoedges.

Thecorepartisaroutinethatcanefficientlysearchforthetwo-boundarygraph(TBG),thatis,thesubgraphcontainingtwoboundarynodesthatseparateitfromotherpartsofthewholegraph.Experimentsvalidateitseffectivenessbyusinglarge-scalegraphscontainingupto107nodes.

Theworkadvancesthestateoftheartbyintroducinganewlosslessandgeneralsize-freecontractionconditionwithahighlyefficientwaytolocatethecorrespondingsubgraphs.Specifically,thetheoreticalcon-tributionsinclude:(a)Weprovethatthecontractionoftwo-boundarygraphscanmaintaintheexactmax-flowresult,whichleadstothecontractionalgorithmthathasfewconstraints(e.g.,unlimitedsubgraphsize)andcanensureaccuratesolution.Theseconditionshavehardlybeenmetsimultaneouslybefore.(b)Tofindthetwo-boundarygraph,weproposetousethemappingbetweenthedepth-firsttraversaltreeandthenodecutset(NCS).ThemethodcanefficientlysearchfortheNCScontainingonlytwonodes(i.e.,twonodesoftheboundedgraph).

(c)WeproposethestrategyofselectingallreusableTBGsforagivennodepair.

Inaddition,thepracticalcontributionsare:(a)Toensurealgorithmgenerality,weproposetoidentifythebi-connectedcomponent(BCC)firstandthenTBGineachBCC,toensurealgorithmgenerality.SinceTBGpartiallyoverlapswithsomeexistingandinefficientsubgraph

?Correspondingauthor.

E-mailaddresses:

weiwei_ise@

(W.Wei),

wangpengpeng_do@

(P.Wang),

dongyb@

(Y.Dong).

/10.1016/j.eswa.2023.120151

Received10June2022;Receivedinrevisedform11March2023;Accepted12April2023

Availableonline20April2023

0957-4174/?2023ElsevierLtd.Allrightsreserved.

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

2

Fig.1.ExamplesshowingthedifferencebetweenTTCMaxandexistingcontractionalgorithms(usedinSection

1

).

contractionconditions,itcannotbeapplieddirectly.(b)Toensurealgo-rithmefficiencyandavoidthehighcomplexityofenumeratingTBGs,weintroducealowcomplexityrandomsearchalgorithm,whichcanhelpfindenoughTBGsforaccelerationatasmallcost.Experimentalresultsshowthatthealgorithmcanaccelerateexistingalgorithmsingeneratedgraphfamiliesandreal-worldgraphs,whiletheaccelerationratiocanbeuptotwoordersofmagnitude,andthuscanbeusedasaneffectivecomplementtoexistingalgorithms.

Literaturereview

Classicaccelerationattemptsmainlyfocusedonalgorithmtuning.Existingalgorithmsevolveintwodirections:theaugmentingpath-basedalgorithms(

Jack&Richard

,

1972

)andpreflow-basedalgo-rithms(

Goldberg&Tarjan

,

1988

).Theaugmentingpath-basedalgo-rithmsfocusonhowtofindasuitablepathbetweensourceandsinknodesineachiterationofmax-flowcomputation,sothatthewholecomputationcanbeefficientlyaccelerated.

JackandRichard

(

1972

)

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

providedselectionrulesthatcanhelpavoidimproperselectionofaugmentingpathsleadingtoseverecomputationaldifficulties.Anewalgorithmusingtheshortestaugmentingpathwasproposed.

Karzanov

(

1974

)explicitlyintroducedtheblockingflowmethod,whichaug-mentedalongamaximumsetofshortestpathsbyfindingablockingflow.Suchaugmentationincreasedtheshortestaugmentingpathlengthandthusacceleratedtheshortestaugmentingpathmethod.Unlikeaug-mentingpath-basedmethods,push-relabel-basedmethodsmaintainedapreflowanditerativelyappliedpushoperationstoupdatethepreflow,

and

usedrelabeloperationstoupdatenodedistances(

Goldberg&

Tarjan

,

1988

).Here,apreflowisdifferentfromaflowinthatthetotalamountflowingintoanodecantemporarilyexceedthetotalamountflowingout,andtheproposedalgorithmpushesthelocalflowexcesstowardsthesinkalongtheestimatedshortestpath.

Inadditiontotuningalgorithmsthatkeepexactmax-flowvalues,

there

isalsoresearchintotradingaccuracyforspeed.

Christiano,Kel-

ner,Madry,Spielman,andTeng

(

2011

)proposedanewapproximationalgorithmforthemax-flowproblem.Bysolvingalistofelectricalflowproblemswiththesolutionofalinearequationsystem,thealgorithmcanbefasterthantheprevious??(??3∕2)algorithms.

Sherman

(

2013

)proposedanewalgorithmusing??-congestion-approximators.Theal-gorithmmaintainedanarbitraryflowthatmayhavesomeresidualexcessanddeficits,andittookstepstominimizeapotentialfunctionmeasuringthecongestionofthecurrentflowplusanover-estimate

of

thecongestionrequiredtoroutetheresidualdemand.

Jonathan,

YinTat,Lorenzo,andAaron

(

2014

)introducedanewframeworkforapproximatelysolvingflowproblemsandappliedittoprovideasymptoticallyfasteralgorithmsformax-flowandmaximumconcur-rentmulti-commodityflowproblems.Thetechniquestheyusedareanon-Euclideangeneralizationofgradientdescentwithboundsonitsperformance,thedefinitionandefficientconstructionofanewtypeofflowsparsifier,andafastobliviousroutingschemeforflowproblems.

Anothermajorcategoryofmax-flowaccelerationalgorithmisbasedonpreprocessing,i.e.,reducingthegraphsizeforacceleration.Specialsubgraphsarecontractedtohelpreducethesizeofthegraph,butcanalsocauseachangeinthemax-flowvaluebetweennodepairs.Therearemanydifferentsubgraphcontractionconditionsthatcanbeusedtocontractthegraph.Thefirsttypeofcontractionconditionistomaintainthemax-flowvaluesintheoriginalgraph.

ScheuermannandRosenhahn

(

2011

)proposedanalgorithmforimagesegmentation,andthebasicideaistosimplifytheoriginalgraphwhilemaintainingthemax-flowproperties.ThealgorithmconstructsaSlimGraphbymergingnodesthatareconnectedbysimpleedges,andtheresultingslimGraphcanbeappliedwithstandardmax-flowalgorithms.

LiersandPardella

(

2011

)presentedflow-conservingconditionsunderwhichsubgraphscanbecontractedtoasinglenode.Aftercapacitynormalization,thealgorithmattemptedtoshrinkthemaxedgeamongalledgesbetweentwonodes,orbetweenthreenodes,orbetweenaspecialclusterofnodes.Basedontheconditions,theresearchersalsoproposedatwo-stepmax-flowalgorithmtosolvetheprobleminstancesfromphysicsandcomputervision.

Therearealsographcontractionconditionswithnosizelimitthatcansignificantlyreducethegraphsizebutattheexpenseofchangedmax-flowvalues.

Zhangetal.

(

2011

)examinedthegraphcontractionconditionofmaximalclique.Bycontractingtheappropriatemaximumcliqueinthenetwork,thealgorithmcanapproximatethemax-flowresultefficiently.

Zhangetal.

(

2012

)leveragedthegraphcommunityforacceleration.Thecommunitydetectionalgorithmisappliedto

detectallcommunitiesinanetwork,wherethesourceandsinknodes

wereestablishedtofindneighbor-node-setastocontracttheoriginalgraphformax-flowacceleration.

Existingresearchhasalsoacceleratedmax-flowcalculationbycon-structingahigh-leveloverlay.Theoverlaypathcanhelpaccelerateordirectlyobtainmax-flowresults.Awell-knownoverlayistheGomory–Hutree(

Gusfield

,

1990

).Itisbuiltbyorganizingallthe??nodesoftheoriginalgraphintoatree,andtheminimumedgecapacityinthepathbetweenanytwonodesisthemax-flowvaluebetweenthem.TheGomory–Hutreeisnotwidelyusedduetoitshighcomplexity,e.g.,it

needs

???1max-flowcalculationtobuildaGomory–Hutree.

Zhao

etal.

(

2014

)viewedtheoriginalgraphasalayergraphbetweenthesourceandsinknodes,e.g.,nodesatthesamedistancefromthesourcenodeformalayer.Themax-flowvaluecanbecalculatedasthesmallestofallthemax-flowvaluesbetweenadjacentlayers.

Weietal.

(

2018

)attemptedtodividetheoriginalgraphintosubgraphs(i.e.,thebi-connectedcomponent)withcutnodesasboundarynodes.Max-flowcalculationbetweenanygivennodepairinvolvesonlyaportionofcutnodesandsubgraphs,anditcanbedividedintoseveralsub-calculationsbetweenadjacentsubgraphs.

Alltheabovemax-flowcalculationscanbefurtheracceleratedby

algorithm

parallelization(

Baumstark,Blelloch,&Shun

,

2015

;

Jiadong,

Zhengyu,

&Bo

,

2012

;

Khatri,Samar,Behera,etal.

,

2022

).

Khatri

etal.

(

2022

)proposedseveraltechniquestoimprovetheperformanceofthepush-relabelmax-flowalgorithmonGPUs.Theythencombinethepush-relabelalgorithmwiththeirnewlyproposedpull-relabelalgo-rithmtoconstructapull-push-relabelmaxflowalgorithm.Experimentsusingreal-worldandsyntheticgraphsshowitssignificantacceleration

ratio

inthreerepresentativemaximumflowapplications.

Baumstark

etal.

(

2015

)foundthatthewell-knownhighestlabel-basedpush-relabelimplementationisnotoptimalfortheircollectedbenchmarkinstances.Instead,thefirst-in-first-outpush-relabelalgorithmappearstobemoresuitableandisimplementedasasharedmemory-basedparallelalgorithm.Aparallelversionofglobalrelabelingisusedtoimprovespeed.Experimentalresultsshowthesuperiorityofthisalgo-rithmoverthefastestexistingimplementation.

Jiadongetal.

(

2012

)proposedtwoGPU-basedmaximumflowalgorithms,wherethefirstisasynchronousandlockfreeandthesecondissynchronizedviatheprecoloringtechnique.ExperimentalresultsshowthattheGPU-basedalgorithmoutperformstheCPU-basedalgorithmbyaboutthreetimes,andinGPU-basedalgorithms,thesynchronousalgorithmoutperformstheasynchronousalgorithminsomesparsegraphs.

Model

Themax-flowproblem

Themax-flowproblembetweennodes??and??inadirectedgraphisformulatedinEq.(

1

).??isthecollectionofallnodesinthegraph,and

??isthecollectionofalldirectededgesinthegraph.Foradirectededge

??fromnode??to??,denote????≥0asthecapacityof??,and??(??,??)≤????or

| |

??(??)≤????astheamountofflowfrom??to??,themax-flowproblemistofindthemaximumsumofflowoutof??andinto??,asshowninEq.(

1

).Here???(??)={??∈??(??,??)∈??}and??+(??)={??∈??(??,??)∈??}

aretwosetsofadjacentnodesof??.Theconstraintsoftheproblemare:

(∑

(a)theflowvalueoneachedgeshallnotexceedthecapacityoftheedge,and(b)thevalueofallflowsintoanodemustbethesameasthatoutsidethenode.Thesolutionisthemax-flowvalue???(??,??)andtheflowvaluesatalledges.Wemainlyfocusontheprobleminconnectedundirectedgraphs,whichcanberepresentedasdirectedgraphsbytransformingeachundirectededgeintotwodirectededgesbetweenadjacentnodes.

arenotdividedintoanycommunities.Foreachcommunityfoundinthenetwork,thealgorithmwillvalidatethecontractconditionthatthetotalamountflowingintoacommunitycanflowthroughthecommunity,whichwillbecontractedifconditionshold.

Zhaoetal.

???(??,??)=??????

??∈??+(??)

?

??0≤????≤???????∈??(??)

??(??,??))

(1)

(

2012

)examinedthegraphcontractionconditioncalledneighbor-node-set,whichisonenodeplusitsneighboringnodes.Specialconditions

??.??.

3 ??

??∈∑???(??)

??(??,??)=

??∈??+(??)

??(??,??)???∈???{??,??},(??)

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

PAGE

4

Definition3.5.Intheoriginalgraph,TBGcontractionistoreplaceallnodesandedgesintheTBGasanedgebetweenitstwoBNs,andtheedgecapacityisthemax-flowvaluebetweenBNsthroughnodesinsidetheTBG.

TBGcanhelpspeedupmax-flowcalculationbecauseTBGcontrac-tiondoesnotchangethemaximumflowvaluebetweenanynodesoutsidetheTBG.

Lemma3.6.ForaTBG,themax-flowvaluebetweenthenodepairsoutsidetheTBGintheoriginalgraphisthesameasinthegraphwiththecontractedTBG.

Fig.2.AnexampleofTBGdefinedin

Definition

3.4

(Allsolid-linenodesandtheedgesconnectingthemconstituteTBG).

Thebi-connectedcomponenttree

Givenanundirectedgraphof??withthesetofallnodes??andthesetofalledges??,wefirstintroducethecoredefinitionsthatarerelatedtoouralgorithm.Ifnotmentioned,allthegraphsmentionedareundirectedgraphs.

Definition3.1.Acutnodeinagraphisanodewhoseremovalwilldividethegraphintoatleasttwodisconnectedsubgraphs.Bi-connectedcomponent(BCC)isthemaximumconnectedsubgraphinwhichanytwonodeshaveatleasttwodisjointpathsbetweenthem.

NotethatthecutnodeswillsplittheoriginalgraphintoBCCs.Anexampleisshownin

Fig.

4

(a),whereanygraphcanberepresentedasthegraphontheleft,withtheBCCtreeontheright.Itisobviousthatremovinganycutnodewilldisconnectthegraph.IthasbeenfoundthatanygivengraphcanbetransformedintoaBCCtreewithcutnodeconnectingtheseBCCs(

Hopcroft&Tarjan

,

1973

)(asshownontherightof

Fig.

4

(a)):

Theorem3.2.AnyconnectedgraphcanbetransformedintoatreeofBCCs.

Proof.Pleaserefertopaper(

Weietal.

,

2018

).

Thetwo-boundarygraph

Thedefinitionofboundarynodeisintroducedfirst.

Definition3.3. Foraconnectedsubgraph??′in??withnodeset

??′???andedgeset??′???,aboundarynode(BN)of??′isanode

??∈??′thathasatleastoneadjacentnode??′∈?????′.

Inthepaper,wefocusonthekindofsubgraphthatcontainsonlytwoBNs.

Definition3.4.Thetwo-boundarygraph(TBG)isaconnectedsub-graphin??withonlytwoBNs.

AnexampleofTBGisgivenin

Fig.

2

,whereallsolid-linenodes(andtheedgesbetweenthem)constituteTBG.AnyothernodeexceptBNs(nodes1and2)intheTBGiscalledtheinnernode(IN),i.e.,allINsandBNsin

Fig.

2

constituteTBG.AnynodeoutsidetheTBGiscalledtheouternode(ON)oftheTBG.

TBGisusefulbecausebycalculatingthemax-flowvaluebetweenitsBNsinsidetheTBG,wecancontracttheTBGasanedgebetweenitsBNs,andtheedgecapacityisjustthemax-flowvaluebetweenitsBNsinsidetheTBG:

Proof.

Forthemax-flowprobleminanundirectedgraph,itneedstobeconvertedtotheproblemintheequivalentdirectedgraph,thatis,theundirectededgebetweentwonodesisconvertedintotwodirectededgesofthetwonodeswiththesamecapacityastheundirectededgecapacity.Anyin-edgeflowisadirectedflowwiththesamedirectionasthedirectededge.

Denotethemax-flowfrom??to??as???(??,??),giventwonodes??and??

intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatforeachpairofadjacentnodes??and??,onlyoneedgeof(??,??)and(??,??)hasapositiveflowvalueinthefinalmax-flowresult.

Becausethemaximumvaluesofvariousaccuratemaximumflowalgorithmsareconsistent,weuseoneofthecommonlyusedmethods,theaugmentingpath-basedmethod,toillustratetheaboveconclusion.Formax-flowfrom??to??,thecoreideaistofindandfillasimplepathwithpositivevalueflowbetween??and??ineachiterationuntilnofurtherpathcanbefoundaftermanyiterations.Thepathfindingisappliedtotheresidualgraphupdatedineachiteration.Forexample,intheoriginalgraphforthedirectededge(??,??)withitscapacity????(??,??)andflowvalue

????(??,??)afteraniteration,intheresultingresidualgraphtherewillbeanedge(??,??)with??(??,??)=????(??,??)?????(??,??),andanedge(??,??)with??(??,??)=????(??,??)+????(??,??).

Notethatintheaugmentingpath-basedmethod,theresidualcapacityof(??,??)introducedbytheflowonthereverseedgeisusedatfirst,andusingthecapacityofoneedgeintheresidualgraphdecreasestheflowvalueonitsreverseedgeintheoriginalgraph.Thus,inoneiteration,sincethesimplepathallowsnoloopingintheresidualgraph,onlyoneofthetwoedges(??,??)and(??,??)willbeincludedinthesimplepathbetween??and

??.Soafterthefirstiteration,onlyoneedgehasflowintheoriginalgraphandassumethatitisthedirectededge(??,??)withitscapacity????(??,??)andflowvalue????(??,??).Assumingthatinthenextiterationtheedge(??,??)isincludedinthepathwithflow

??(??,??),if????(??,??)≥??(??,??),intheoriginalgraphitwillcausetheflowvalueof(??,??)todecreasei.e.,(??,??)withupdatedflowvalue

????(??,??)???(??,??)and(??,??)withflowvalue0.

Orif????(??,??)<??(??,??),thenintheoriginalgraphtheflowvalueof(??,??)willdecreaseto0andtheflowvalueof(??,??)willbecomepositive??(??,??)?????(??,??).Theresultissimilarifedge(??,??)isselected,i.e.,onlyoneedgeofthetwoedgesbetweentwonodeshasapositiveflowvalueintheupdatedoriginalgraphofeachiteration.

Thus,itisobviousthatintheresultingoriginalgraphofeachiteration(includingthefinalresultgivenbythefinaliteration),onlyoneedgeof(??,??)and(??,??)isusedtoholdtheflow.

Giventwonodes??and??intheequivalentdirectedgraphcorre-spondingtotheundirectedgraph,when???(??,??)isdeployedinthegraph,???(??,??)withthesamemax-flowvaluecanbedeployedinthegraphatthesametime.

Accordingtoitem

(2)

above,thereverseedgeofeachpositive-flowedgeisnotusedinthemax-flowresult.Itisobviousthatfor

eachedge(??,??)withpositiveflowvalue??(??,??)inthemax-flow

Itisclearthat????≤???(??,??)and????≤???(??,??)inanymax-flow

1 12 2 21

resultbetween??and??,bymovingtheflowinedge(??,??)toedge

(??,??)withsameflowvalue(whichisequivalenttoreversingtheinandoutflowsofeachnode),theper-nodeflowconstraints

resultbetween??and??outsidetheTBG.Becauseanydeployed

flowsmustbefeasibletoreachthetargetnode??inthemax-flowresult.Orif????>???(??,??)anditmustflowoutofTBGthrough??2,

? 1 12

inEq.(

1

)alsoholdanditwillgeneratethemax-flowresult??(??,??)

withsamemax-flowvaluefromnodes??to??.Andsinceeachin-edgeflowof???(??,??)sitsatadifferentedgefromitscounterpartin

???(??,??),???(??,??)and???(??,??)onlysharenodesandthustheirflowswillnotaffecteachother,itisclearthat???(??,??)and???(??,??)canbedeployedinthegraphatthesametime.

DenotetheboundarynodeofthegivenTBGas??1and??2.Denotethemax-flowvaluebetween??1and??2as?????????,the

whichwillgenerateanin-edgeflowdistributionwiththetotal

flowvaluebetween??1and??2insideTBGlargerthan???(??1,??2)

and???(??2,??1),whichcontradictsthemax-flowdefinition.

Asaresult,iftheTBGiscontractedastheundirectededge(or

directededgesinbothdirections)between??1and??2withthemax-flowvalue???(??1,??2)==???(??2,??1),theflowsinto??1or??2inthemax-flowresultcanbekeptunchangedandthecapacitylimitis

met,sotheotherpartsofthemax-flowresultarekeptthesame.

???????

(??1,??2)

Inaddition,themax-flowvaluebetween??and??willnotincrease

??(??2,??1)withthesamemax-flowvaluecanbedeployedinthe

TBGatthesametime.

Thisisobviousfromtheitem

(3)

above.

Denotethemax-flowfrom??to??as???(??,??),giventwonodes??and??intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatthereisnocycleflowpathinthe

asthecontractionwillnotgenerateanynewaugmentingpathbetween??and??.Ifthebottleneckedgetofindamoreaug-mentingpathisnotinsidetheTBG,TBGcontractionwillkeeptheotherpartofthemax-flowresultandthebottleneckedgeunchanged,andthusnonewaugmentingpathwillbegenerated.IfthebottleneckedgeisinsidetheTBG,theremustbe????==

max-flowresults.Thatis,intheoriginalgraphthedirectededge

???

1

or??2==???

(??1,??2) 1

(??2,??1)(orTBGcanindependentlyadjustthe

withpositiveflowwillnotformacycle.

Supposethatwhenasimplepathbetween??and??(i.e.,??)isfoundintheresidualgraphinoneiteration,therewillbeacycleflowpathintheupdatedoriginalgraph.Supposeintheoriginalgraphthepathsegmentcontainingtheoverlappednodesinthelooppathandthesimplepathisboundedbynodes??and??.Itisclearthatthereareatleasttwodirectedpathsinreversedirectionswithpositiveflowbetween??and??intheoriginalgraph,anddenotethemas????(??,??)and????(??,??)andsuppose????(??,??)asthepathsegmentinthefoundsimplepathintheresidualgraph,whichisalsothesimplepathintheoriginalgraph.So,beforethesimplepath??isfound,????(??,??)alreadyexistsintheoriginalgraphandthereiscertainlyasimplepathwithresidualcapacitiesbetween??and??intheresidualgraph(i.e.,??(??,??)).Andnotalledgeshaveresidualcapacityinthe????(??,??)appliedintheresidualgraphortherewillbeacycleflowpathbeforethesimplepath

??.Thatis,givenapath??(??,??)withresidualcapacitiesinallitsedges,thealgorithmchoosesthepath????(??,??)withsomeedgesthatdonothaveresidualcapacitiesintheresidualgraph,whichcontradictsthefactthatintheaugmentingpath-basedmethod,residualcapacitywillbeusedfirst.Thus,inthemax-flowresultoftheoriginalgraph,thedirectededgewithpositiveflowwillnotformacycle.

Inthemax-flowresultbetweenanynodepair,??and??outsidea

TBGwithBN??1and??2,representtherespectiveflowvalueintotheTBGthrough??1and??2as????and????,onlyoneof????and????

internalflowtoallowmoreflowthroughtheTBG),sobykeepingtheedgecapacityaftercontractionas???(??1,??2),thecontractionwillnotgenerateanewaugmentingpath.

Asaresult,TBGcontractionwillmaintainthemax-flowresultbeforecontractionandwillnotgenerateanewaugmentingpathtochangethemax-flowresult.

Thelemmaisproved.

Asaresult,formax-flowcalculationbetweenanynodepairoutsidetheTBG,theTBGcanbetreatedasanedgebetweenitsBNs.AndforTBGsthatdonotcontainthegivennodepair,theycanbecontractedonebyonewhilethemax-flowvalueofthenodepairremainsun-changedaftereachcontraction.Thatis,allTBGsthatdonotcontainthegivennodepaircanbecontractedatthesametime.

ItisalsofoundthatfortheTBGinsideaBCC,theremainingportionoftheBCCafterremovingtheTBGisstillaTBG,whichisdefinedastheinverseTBGoftheoriginalTBG:

Lemma3.7.InaBCCwithnodeset???andedgeset???,givenanyTBGinsideitwithnodeset??′????andedgeset??′????withthesetoftwoboundarynodes????.TheBCCportionoutsidetheTBGwithnodeset

??′′=??????′+????andedgeset??′′=??????′isstillaTBGwiththesameBNs.

Proof.BecausethereareatleasttwopathswithoutdisjointingnodesbetweenanytwonodesinaBCC,neighborsaandbofboundarynodes

isgreaterthan0.

1 2 1

2 ??1and??2outsidetheTBGhavepathsthatdonotpassthrough??1and

Thus,ifboth????and????arenotzerointhemax-flowresult,since

??2.Byadding??1and??2andtheiredgeswiththerespectiveneighbors

1 2 ??and??,itwillgenerateapathbetween??1and??2intheBCCportion

theflowintotheTBGfrom??2canonlyexitTBGthrough??1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論