山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題含解析_第1頁
山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題含解析_第2頁
山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題含解析_第3頁
山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題含解析_第4頁
山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省德州市寧津縣2025年初三寒假延時階段檢測試題數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.2.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁3.若關(guān)于的一元二次方程x(x+1)+ax=0有兩個相等的實數(shù)根,則實數(shù)a的值為()A. B.1 C. D.4.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)5.tan45°的值等于()A. B. C. D.16.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-27.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.8.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.49.如圖所示幾何體的主視圖是()A. B. C. D.10.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是()A. B.C. D.11.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙12.實數(shù)a,b在數(shù)軸上對應(yīng)的點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式______.14.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.15.如圖,正△ABO的邊長為2,O為坐標(biāo)原點,A在x軸上,B在第二象限,△ABO沿x軸正方向作無滑動的翻滾,經(jīng)第一次翻滾后得到△A1B1O,則翻滾2017次后AB中點M經(jīng)過的路徑長為______.16.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.17.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.18.27的立方根為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.20.(6分)今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表:對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結(jié)合統(tǒng)計圖表,回答下列問題.(1)本次參與調(diào)查的學(xué)生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應(yīng)的圓心角是度;(3)請補(bǔ)全條形統(tǒng)計圖;(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展關(guān)于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機(jī)摸出一個球,另一人再從剩下的三個球中隨機(jī)摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.21.(6分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1).求一次函數(shù)與反比例函數(shù)的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標(biāo).22.(8分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.23.(8分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個比一個?。僮鞑襟E作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個正方形CHIJ這個過程可以不斷進(jìn)行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).24.(10分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.25.(10分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).26.(12分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣和優(yōu)惠,在每個轉(zhuǎn)盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應(yīng)9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動共有兩種方式.方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向折扣區(qū)域時,所購物品享受對應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.27.(12分)某公司為了擴(kuò)大經(jīng)營,決定購進(jìn)6臺機(jī)器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價格和每臺機(jī)器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機(jī)器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產(chǎn)量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進(jìn)的6臺機(jī)器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應(yīng)角相等,故選D.本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.2、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.3、A【解析】【分析】整理成一般式后,根據(jù)方程有兩個相等的實數(shù)根,可得△=0,得到關(guān)于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數(shù)根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.4、B【解析】

根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關(guān)鍵.5、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、D【解析】

把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標(biāo)互為相反數(shù),而平移時,頂點的縱坐標(biāo)不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標(biāo)是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標(biāo)互為相反數(shù).∵左、右平移時,頂點的縱坐標(biāo)不變,∴平移后的頂點坐標(biāo)為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標(biāo)不變;左右平移時,點的縱坐標(biāo)不變.同時考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點的坐標(biāo)特征.7、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ8、B【解析】

圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.本題考查正多邊形與圓,關(guān)鍵是利用知識點:圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.9、C【解析】

從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.10、D【解析】

此題運(yùn)用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側(cè)面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點P應(yīng)該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.11、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.12、D【解析】

根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(x+y+z)(x﹣y﹣z).【解析】

當(dāng)被分解的式子是四項時,應(yīng)考慮運(yùn)用分組分解法進(jìn)行分解.本題后三項可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).本題考查了用分組分解法進(jìn)行因式分解.難點是采用兩兩分組還是三一分組.本題后三項可組成完全平方公式,可把后三項分為一組.14、1.【解析】

試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).15、(+896)π.【解析】

由圓弧的弧長公式及正△ABO翻滾的周期性可得出答案.【詳解】解:如圖作⊥x軸于E,易知OE=5,,,觀察圖象可知3三次一個循環(huán),一個循環(huán)點M的運(yùn)動路徑為==,翻滾2017次后AB中點M經(jīng)過的路徑長為,故答案:本題主要考查圓弧的弧長公式及三角形翻滾的周期性,熟悉并靈活運(yùn)用各知識是解題的關(guān)鍵.16、1≤x≤1【解析】

此題需要運(yùn)用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進(jìn)而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當(dāng)F、D重合時,BP的值最小;根據(jù)折疊的性質(zhì)知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當(dāng)E、B重合時,BP的值最大;由折疊的性質(zhì)可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關(guān)鍵.17、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.18、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數(shù)的立方根,用到的知識點為:開方與乘方互為逆運(yùn)算三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點A的坐標(biāo)以及反比例函數(shù)解析式,再將點B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點C,根據(jù)一次函數(shù)解析式求出點C的坐標(biāo),從而得到點OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標(biāo)為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣1;(2)設(shè)AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數(shù)與一次函數(shù)的交點問題.20、解:(1)400;15%;35%.(2)1.(3)∵D等級的人數(shù)為:400×35%=140,∴補(bǔ)全條形統(tǒng)計圖如圖所示:(4)列樹狀圖得:∵從樹狀圖可以看出所有可能的結(jié)果有12種,數(shù)字之和為奇數(shù)的有8種,∴小明參加的概率為:P(數(shù)字之和為奇數(shù));小剛參加的概率為:P(數(shù)字之和為偶數(shù)).∵P(數(shù)字之和為奇數(shù))≠P(數(shù)字之和為偶數(shù)),∴游戲規(guī)則不公平.【解析】(1)根據(jù)“基本了解”的人數(shù)以及所占比例,可求得總?cè)藬?shù):180÷45%=400人.在根據(jù)頻數(shù)、百分比之間的關(guān)系,可得m,n的值:.(2)根據(jù)在扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心的度數(shù)與360°的比可得出統(tǒng)計圖中D部分扇形所對應(yīng)的圓心角:360°×35%=1°.(3)根據(jù)D等級的人數(shù)為:400×35%=140,據(jù)此補(bǔ)全條形統(tǒng)計圖.(4)用樹狀圖或列表列舉出所有可能,分別求出小明和小剛參加的概率,若概率相等,游戲規(guī)則公平;反之概率不相等,游戲規(guī)則不公平.21、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.22、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【解析】

(1)把點A,B的坐標(biāo)代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點A,B,C,P的坐標(biāo),求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應(yīng)邊成比例求t.【詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點坐標(biāo)為(6,1),∵點A(0,1),點B(9,10),∴直線AB的解析式為y=x+1,設(shè)P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當(dāng)m=時,四邊形AECP的面積最大值是,此時P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點Q,設(shè)Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點的三角形與△ABC相似,①當(dāng)△CPQ∽△ABC時,CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當(dāng)△CQP∽△ABC時,CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當(dāng)點P為拋物線的頂點時,在直線AC上存在點Q,使得以C,P,Q為頂點的三角形與△ABC相似,Q點的坐標(biāo)為(4,1)或(?3,1).本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標(biāo)軸的直線上兩點間的距離是較大的坐標(biāo)減較小的坐標(biāo);解(3)的關(guān)鍵是利用相似三角形的性質(zhì)的出關(guān)于CQ的比例,要分類討論,以防遺漏.23、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解析】

(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,F(xiàn)H=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據(jù)題意畫圖即可.【詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.24、見解析【解析】

根據(jù)CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應(yīng)邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.本題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì);熟練掌握平行線的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.25、(1)是;(2)見解析;(3)150°.【解析】

(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論