版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
鄭州市2025屆三校初三聯(lián)合考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)2.計(jì)算的結(jié)果為()A.2 B.1 C.0 D.﹣13.如圖,在矩形ABCD中,O為AC中點(diǎn),EF過O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(
)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.44.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°5.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關(guān)系.則下列說法正確的是()A.兩車同時到達(dá)乙地B.轎車在行駛過程中進(jìn)行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等6.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是A. B. C. D.7.下列命題是真命題的是()A.過一點(diǎn)有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形8.直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動點(diǎn),PC+PD值最小時點(diǎn)P的坐標(biāo)為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)9.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.4210.中國在第二十三屆冬奧會閉幕式上奉獻(xiàn)了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡(luò)上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個數(shù)用科學(xué)記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×10411.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)12.如圖,將△ABC繞點(diǎn)C旋轉(zhuǎn)60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若|a|=2016,則a=___________.14.如圖,直線a、b相交于點(diǎn)O,若∠1=30°,則∠2=___15.若一個反比例函數(shù)的圖象經(jīng)過點(diǎn)A(m,m)和B(2m,-1),則這個反比例函數(shù)的表達(dá)式為______16.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(diǎn)(2,1),那么m的值為_____.17.“若實(shí)數(shù)a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.18.2的平方根是_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.20.(6分)某中學(xué)七、八年級各選派10名選手參加知識競賽,計(jì)分采用10分制,選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊(duì)選手成績分布的條形統(tǒng)計(jì)圖和成績統(tǒng)計(jì)分析表如下,其中七年級代表隊(duì)得6分、10分的選手人數(shù)分別為a、b.隊(duì)別平均分中位數(shù)方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊(duì)成績比八年級隊(duì)好,但也有人說八年級隊(duì)成績比七年級隊(duì)好.請你給出兩條支持八年級隊(duì)成績好的理由.21.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)M是拋物線上的動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時,求點(diǎn)M的坐標(biāo);②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.22.(8分)已知關(guān)于x的一元二次方程3x2﹣6x+1﹣k=0有實(shí)數(shù)根,k為負(fù)整數(shù).求k的值;如果這個方程有兩個整數(shù)根,求出它的根.23.(8分)如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點(diǎn)P在線段AB運(yùn)動過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.24.(10分)清朝數(shù)學(xué)家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實(shí)田四畝七分;又山田五畝,場地三畝,共折實(shí)田五畝五分,問每畝山田折實(shí)田多少,每畝場地折實(shí)田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當(dāng)于實(shí)田多少畝?25.(10分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可?。蝗绻块g客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?26.(12分)如圖是根據(jù)對某區(qū)初中三個年級學(xué)生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進(jìn)行隨機(jī)抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調(diào)查人數(shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計(jì)該區(qū)有初中生最喜歡讀“名人傳記”的學(xué)生是多少人?27.(12分)如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當(dāng)AB=8,CE=2時,求AC的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
點(diǎn)在第二象限的條件是:橫坐標(biāo)是負(fù)數(shù),縱坐標(biāo)是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點(diǎn)的坐標(biāo)的特征:橫坐標(biāo)符號為負(fù),縱坐標(biāo)符號為正,各選項(xiàng)中只有C(﹣3,1)符合,故選:D.本題考查點(diǎn)的坐標(biāo)的性質(zhì),解題的關(guān)鍵是掌握點(diǎn)的坐標(biāo)的性質(zhì).2、B【解析】
按照分式運(yùn)算規(guī)則運(yùn)算即可,注意結(jié)果的化簡.【詳解】解:原式=,故選擇B.本題考查了分式的運(yùn)算規(guī)則.3、C【解析】∵EF⊥AC,點(diǎn)G是AE中點(diǎn),∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設(shè)AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點(diǎn),∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個,故選C.【點(diǎn)睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應(yīng)用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.4、A【解析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點(diǎn)睛:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.解決問題的關(guān)鍵是三角形外角性質(zhì)以及角平分線的定義的運(yùn)用.5、B【解析】
①根據(jù)函數(shù)的圖象即可直接得出結(jié)論;②求得直線OA和DC的解析式,求得交點(diǎn)坐標(biāo)即可;③由圖象無法求得B的橫坐標(biāo);④分別進(jìn)行運(yùn)算即可得出結(jié)論.【詳解】由題意和圖可得,轎車先到達(dá)乙地,故選項(xiàng)A錯誤,轎車在行駛過程中進(jìn)行了提速,故選項(xiàng)B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應(yīng)的速度是:千米/時,故選項(xiàng)D錯誤,設(shè)貨車對應(yīng)的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應(yīng)的函數(shù)解析式為y=60x,設(shè)CD段轎車對應(yīng)的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應(yīng)的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項(xiàng)C錯誤,故選:B.此題考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵在于利用題中信息列出函數(shù)解析式6、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會利用參數(shù)解決問題,屬于中考常考題型.7、D【解析】
根據(jù)真假命題的定義及有關(guān)性質(zhì)逐項(xiàng)判斷即可.【詳解】A、真命題為:過直線外一點(diǎn)有且只有一條直線與已知直線平行,故本選項(xiàng)錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項(xiàng)錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項(xiàng)錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項(xiàng)正確.故選D.本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質(zhì)是解答本題的關(guān)鍵,當(dāng)命題的條件成立時,結(jié)論也一定成立的命題叫做真命題;當(dāng)命題的條件成立時,不能保證命題的結(jié)論總是成立的命題叫做假命題.熟練掌握所學(xué)性質(zhì)是解答本題的關(guān)鍵.8、C【解析】
作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點(diǎn)坐標(biāo)為A(﹣6,0)和點(diǎn)B(0,4),因點(diǎn)C、D分別為線段AB、OB的中點(diǎn),可得點(diǎn)C(﹣3,1),點(diǎn)D(0,1).再由點(diǎn)D′和點(diǎn)D關(guān)于x軸對稱,可知點(diǎn)D′的坐標(biāo)為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點(diǎn)C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點(diǎn)P的坐標(biāo)為(﹣,0).故答案選C.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;軸對稱-最短路線問題.9、B【解析】
根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個數(shù)據(jù),
所以中位數(shù)為第3、4個數(shù)的平均數(shù),即中位數(shù)為=39,
故選:B.本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,若這組數(shù)據(jù)的個數(shù)是奇數(shù),則最中間的那個數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個數(shù)是偶數(shù),則最中間兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).10、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】810000=8.1×1.
故選B.本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.11、C【解析】
根據(jù)黃金分割點(diǎn)的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長線段;
則BC=2×=-1.
故答案為:-1.本題考查了黃金分割,應(yīng)該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.12、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.本題的關(guān)鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±1【解析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.14、30°【解析】因∠1和∠2是鄰補(bǔ)角,且∠1=30°,由鄰補(bǔ)角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.15、【解析】【分析】根據(jù)反比例函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)之積不變可得關(guān)于m的方程,解方程即可求得m的值,再由待定系數(shù)法即可求得反比例函數(shù)的解析式.【詳解】設(shè)反比例函數(shù)解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點(diǎn)A(-2,-2),點(diǎn)B(-4,1),所以k=4,所以反比例函數(shù)解析式為:y=,故答案為y=.【點(diǎn)睛】本題考查了反比例函數(shù),熟知反比例函數(shù)圖象上點(diǎn)的橫、縱坐標(biāo)之積等于比例系數(shù)k是解題的關(guān)鍵.16、2【解析】
把點(diǎn)(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(diǎn)(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點(diǎn)的坐標(biāo)滿足的關(guān)系式.17、答案不唯一,如1,2,3;【解析】分析:設(shè)a,b,c是任意實(shí)數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設(shè)a,b,c是任意實(shí)數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設(shè)a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點(diǎn)睛:本題考查了命題的真假,舉例說明即可,18、【解析】
直接根據(jù)平方根的定義求解即可(需注意一個正數(shù)有兩個平方根).【詳解】解:2的平方根是故答案為.本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)4.【解析】
(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進(jìn)而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進(jìn)而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.考點(diǎn):全等三角形的判定與性質(zhì).20、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊(duì)成績好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊(duì)比七年級隊(duì)成績好.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.統(tǒng)計(jì)表;3.加權(quán)平均數(shù);4.中位數(shù);5.方差.21、(1)(1,4)(2)①點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為或【解析】
(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點(diǎn)B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點(diǎn)D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點(diǎn)M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點(diǎn)M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點(diǎn)M(﹣,﹣),綜上所述,滿足條件的點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②如圖中,∵M(jìn)N∥x軸,∴點(diǎn)M、N關(guān)于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當(dāng)﹣m2+2m+3=1﹣m時,解得m=,當(dāng)﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.22、(2)k=﹣2,﹣2.(2)方程的根為x2=x2=2.【解析】
(2)根據(jù)方程有實(shí)數(shù)根,得到根的判別式的值大于等于0列出關(guān)于k的不等式,求出不等式的解集即可得到k的值;(2)將k的值代入原方程,求出方程的根,經(jīng)檢驗(yàn)即可得到滿足題意的k的值.【詳解】解:(2)根據(jù)題意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k為負(fù)整數(shù),∴k=﹣2,﹣2.(2)當(dāng)k=﹣2時,不符合題意,舍去;當(dāng)k=﹣2時,符合題意,此時方程的根為x2=x2=2.本題考查了根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:(2)△>0時,方程有兩個不相等的實(shí)數(shù)根;(2)△=0時,方程有兩個相等的實(shí)數(shù)根;(3)△<0時,方程沒有實(shí)數(shù)根.也考查了一元二次方程的解法.23、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點(diǎn)Q的坐標(biāo)為(3,2)或(﹣1,0)時,以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.【解析】
分析:(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,易得點(diǎn)Q坐標(biāo).詳解:(1)由拋物線過點(diǎn)A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),
將點(diǎn)C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點(diǎn)D坐標(biāo)為(0,-2),
設(shè)直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當(dāng)-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當(dāng)∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當(dāng)m=4時,點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,
∴m=3,點(diǎn)Q的坐標(biāo)為(3,2);
②當(dāng)∠BQM=90°時,此時點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,
此時m=-1,點(diǎn)Q的坐標(biāo)為(-1,0);
綜上,點(diǎn)Q的坐標(biāo)為(3,2)或(-1,0)時,以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.點(diǎn)睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運(yùn)用.【詳解】請?jiān)诖溯斎朐斀猓?4、每畝山田產(chǎn)糧相當(dāng)于實(shí)田0.9畝,每畝場地產(chǎn)糧相當(dāng)于實(shí)田畝.【解析】
設(shè)每畝山田產(chǎn)糧相當(dāng)于實(shí)田x畝,每畝場地產(chǎn)糧相當(dāng)于實(shí)田y畝,根據(jù)山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,列二元一次方程組求解.【詳解】解:設(shè)每畝山田產(chǎn)糧相當(dāng)于實(shí)田x畝,每畝場地產(chǎn)糧相當(dāng)于實(shí)田y畝.可列方程組為解得答:每畝山田相當(dāng)于實(shí)田0.9畝,每畝場地相當(dāng)于實(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 給同事的感謝信匯編十篇
- 簡單辭職申請書模板匯編九篇
- 2021過中秋節(jié)作文【5篇】
- 八年級物理教學(xué)計(jì)劃模板八篇
- 生物類實(shí)習(xí)報告模板集錦7篇
- 酒店辭職報告書集錦15篇
- 邊城讀后感匯編15篇
- 法律法規(guī)及事故案例講座
- 甘肅省定西市岷縣2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量監(jiān)測歷史試卷(無答案)
- 交管12123駕駛證學(xué)法減分題庫及答案
- T∕ZSQX 008-2020 建設(shè)工程全過程質(zhì)量行為導(dǎo)則
- ISO-IEC17025-2017實(shí)驗(yàn)室管理體系全套程序文件
- 業(yè)務(wù)員手冊內(nèi)容
- pH值的測定方法
- 深圳智能水表項(xiàng)目商業(yè)計(jì)劃書_參考模板
- 輸出軸的機(jī)械加工工藝規(guī)程及夾具設(shè)計(jì)
- 元旦文藝匯演校長致辭
- 國家開放大學(xué)電大本科《管理案例分析》2023-2024期末試題及答案試卷編號:1304
- 離合器接合叉機(jī)械工藝說明書
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計(jì)及 matlab仿真驗(yàn)證
- 蜂窩煤成型機(jī)設(shè)計(jì)方案.doc
評論
0/150
提交評論