版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Two-SampleTestsandOne-WayANOVAChapter10ObjectivesInthischapter,youlearn:
HowtousehypothesistestingforcomparingthedifferencebetweenThemeansoftwoindependentpopulationsThemeansoftworelatedpopulationsTheproportionsoftwoindependentpopulationsThevariancesoftwoindependentpopulationsThemeansofmorethantwopopulationsTwo-SampleTestsTwo-SampleTestsPopulationMeans,IndependentSamplesPopulationMeans,RelatedSamplesPopulationVariancesGroup1vs.Group2Samegroupbeforevs.aftertreatmentVariance1vs.Variance2Examples:PopulationProportionsProportion1vs.Proportion2DCOVADifferenceBetweenTwoMeansPopulationmeans,independentsamplesGoal:Testhypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationmeans,μ1–μ2
ThepointestimateforthedifferenceisX1–X2*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVADifferenceBetweenTwoMeans:IndependentSamplesPopulationmeans,independentsamples*UseSptoestimateunknownσ.UseaPooled-Variance
ttest.σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalUseS1andS2toestimateunknownσ1andσ2.UseaSeparate-variancettestDifferentdatasourcesUnrelatedIndependentSampleselectedfromonepopulationhasnoeffectonthesampleselectedfromtheotherpopulationDCOVAHypothesisTestsfor
TwoPopulationMeansLower-tailtest:H0:μ1
μ2H1:μ1<μ2i.e.,H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1≤μ2H1:μ1
>
μ2i.e.,H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1=μ2H1:μ1
≠
μ2i.e.,H0:μ1–μ2
=0H1:μ1–μ2
≠0TwoPopulationMeans,IndependentSamplesDCOVATwoPopulationMeans,IndependentSamplesLower-tailtest:H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1–μ2
=0H1:μ1–μ2
≠0aa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
Hypothesistestsforμ1–μ2
DCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownbutassumedequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamplesThepooledvarianceis:Theteststatisticis:WheretSTAThasd.f.=(n1+n2–2)(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalDCOVAPopulationmeans,independentsamplesTheconfidenceintervalfor
μ1–μ2is:Wheretα/2hasd.f.=n1+n2–2*Confidenceintervalforμ1-μ2withσ1andσ2unknownandassumedequalσ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPooled-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVAPooled-VariancetTestExample:CalculatingtheTestStatisticTheteststatisticis:(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVAPooled-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=21+25-2=44CriticalValues:t=±2.0154TestStatistic:Decision:Conclusion:RejectH0ata=0.05Thereisevidenceofadifferenceinmeans.t02.0154-2.0154.025RejectH0RejectH0.0252.040DCOVAPooled-VariancetTestExample:ConfidenceIntervalforμ1-μ2SincewerejectedH0canwebe95%confidentthatμNYSE>μNASDAQ?95%ConfidenceIntervalforμNYSE-μNASDAQSince0islessthantheentireinterval,wecanbe95%confidentthatμNYSE>μNASDAQDCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknown,notassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownandcannotbeassumedtobeequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamples(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandnotassumedequalDCOVATheformulaeforthistestarenotcoveredinthisbook.Seereference8fromthischapterformoredetails.ThistestutilizestwoseparatesamplevariancestoestimatethedegreesoffreedomforthettestSeparate-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithunequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVASeparate-VariancetTestExample:CalculatingtheTestStatistic(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVASeparate-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=40CriticalValues:t=±2.021TestStatistic:Decision:Conclusion:FailToRejectH0ata=0.05Thereisinsufficientevidenceofadifferenceinmeans.t02.021-2.021.025RejectH0RejectH0.0252.019DCOVARelatedPopulations
ThePairedDifferenceTest
TestsMeansof2RelatedPopulations PairedormatchedsamplesRepeatedmeasures(before/after)Usedifferencebetweenpairedvalues:EliminatesVariationAmongSubjectsAssumptions:DifferencesarenormallydistributedOr,ifnotNormal,uselargesamplesRelatedsamplesDi=X1i-X2iDCOVARelatedPopulations
ThePairedDifferenceTestTheith
paireddifferenceisDi,whereRelatedsamplesDi=X1i-X2i
ThepointestimateforthepaireddifferencepopulationmeanμDisD:nisthenumberofpairsinthepairedsampleThesamplestandarddeviationisSD(continued)DCOVATheteststatisticforμD
is:PairedsamplesWheretSTAThasn-1d.f.ThePairedDifferenceTest:
FindingtSTATDCOVALower-tailtest:H0:μD
0H1:μD<0Upper-tailtest:H0:μD≤0H1:μD
>0Two-tailtest:H0:μD=0H1:μD
≠0PairedSamplesThePairedDifferenceTest:PossibleHypothesesaa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
WheretSTAThasn-1d.f.DCOVATheconfidenceintervalforμDisPairedsampleswhereThePairedDifferenceConfidenceIntervalDCOVAAssumeyousendyoursalespeopletoa“customerservice”trainingworkshop.Hasthetrainingmadeadifferenceinthenumberofcomplaints?Youcollectthefollowingdata:PairedDifferenceTest:Example
NumberofComplaints:
(2)-(1)Salesperson
Before(1)
After(2)
Difference,
DiC.B. 6
4-2T.F. 20
6-14M.H. 3
2-1R.K. 0
00M.O. 4
0
-4 -21
D=Din
=-4.2DCOVAHasthetrainingmadeadifferenceinthenumberofcomplaints(atthe0.01level)?
-4.2D=H0:μD=0H1:
μD
0TestStatistic:t0.005=±4.604
d.f.=n-1=4Reject
/2
-4.6044.604Decision:
DonotrejectH0(tstatisnotintherejectionregion)Conclusion:
Thereisinsufficientofachangeinthenumberofcomplaints.PairedDifferenceTest:SolutionReject
/2
-1.66
=.01DCOVATheconfidenceintervalforμDis:Sincethisintervalcontains0youare99%confidentthatμD=0ThePairedDifferenceConfidenceInterval--ExampleDCOVAD=-4.2,SD=5.67TwoPopulationProportionsGoal:testahypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationproportions, π1–π2
ThepointestimateforthedifferenceisPopulationproportionsAssumptions:
n1π1
5,n1(1-π1)5n2π2
5,n2(1-π2)5
DCOVATwoPopulationProportionsPopulationproportionsThepooledestimatefortheoverallproportionis:whereX1andX2arethenumberofitemsofinterestinsamples1and2Inthenullhypothesisweassumethenullhypothesisistrue,soweassumeπ1=π2andpoolthetwosampleestimatesDCOVATwoPopulationProportionsPopulationproportionsTheteststatisticforπ1–π2isaZstatistic:(continued)whereDCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1
π2H1:π1<π2i.e.,H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1≤π2H1:π1
>
π2i.e.,H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1=π2H1:π1
≠
π2i.e.,H0:π1–π2
=0H1:π1–π2
≠0DCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1–π2
=0H1:π1–π2
≠0aa/2a/2a-za-za/2zaza/2RejectH0ifZSTAT<-ZaRejectH0ifZSTAT>ZaRejectH0ifZSTAT<-Za/2
orZSTAT>Za/2
(continued)DCOVAHypothesisTestExample:
TwopopulationProportionsIsthereasignificantdifferencebetweentheproportionofmenandtheproportionofwomenwhowillvoteYesonPropositionA?Inarandomsample,36of72menand35of50womenindicatedtheywouldvoteYesTestatthe.05levelofsignificanceDCOVAThehypothesistestis:H0:π1–π2
=0(thetwoproportionsareequal)H1:π1–π2
≠0(thereisasignificantdifferencebetweenproportions)Thesampleproportionsare:Men: p1=36/72=0.50Women: p2=35/50=0.70Thepooledestimatefortheoverallproportionis:HypothesisTestExample:
TwopopulationProportions(continued)DCOVATheteststatisticforπ1–π2is:HypothesisTestExample:
TwoPopulationProportions(continued).025-1.961.96.025-2.20Decision:
RejectH0Conclusion:
Thereisevidenceofasignificantdifferenceintheproportionofmenandwomenwhowillvoteyes.RejectH0RejectH0CriticalValues=±1.96For=.05DCOVAConfidenceIntervalfor
TwoPopulationProportionsPopulationproportionsTheconfidenceintervalfor
π1–π2is:DCOVAConfidenceIntervalforTwoPopulationProportions--ExampleThe95%confidenceintervalforπ1–π2is:Sincethisintervaldoesnotcontain0canbe95%confidentthetwoproportionsaredifferent.DCOVATestingfortheRatioOfTwoPopulationVariancesTestsforTwoPopulationVariancesFteststatisticH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22*Hypotheses FSTATS12/S22S12=Varianceofsample1(thelargersamplevariance)n1=samplesizeofsample1S22=Varianceofsample2(thesmallersamplevariance)n2=samplesizeofsample2n1–1=numeratordegreesoffreedomn2–1=denominatordegreesoffreedomWhere:DCOVATheFcriticalvalue
isfoundfromtheFtableTherearetwodegreesoffreedomrequired:numeratoranddenominatorThelargersamplevarianceisalwaysthenumeratorWhenIntheFtable,numeratordegreesoffreedomdeterminethecolumndenominatordegreesoffreedomdeterminetherowTheFDistributiondf1=n1–1;df2=n2–1DCOVAFindingtheRejectionRegionH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22F
0
Fα
RejectH0DonotrejectH0RejectH0ifFSTAT>FαF
0
/2RejectH0DonotrejectH0Fα/2
RejectH0ifFSTAT>Fα/2DCOVAFTest:AnExampleYouareafinancialanalystforabrokeragefirm.YouwanttocomparedividendyieldsbetweenstockslistedontheNYSE&NASDAQ.Youcollectthefollowingdata:
NYSE
NASDAQ
Number 21 25Mean 3.27 2.53Stddev 1.30 1.16Isthereadifferenceinthe variancesbetweentheNYSE &NASDAQatthe
=
0.05level?DCOVAFormthehypothesistest:H0:σ21=σ22(thereisnodifferencebetweenvariances)H1:σ21≠σ22(thereisadifferencebetweenvariances)FTest:ExampleSolutionFindtheFcriticalvaluefor
=0.05:Numeratord.f.=n1–1=21–1=20Denominatord.f.=n2–1=25–1=24Fα/2=F.025,20,24=2.33DCOVATheteststatisticis:0
/2=.025F0.025=2.33RejectH0DonotrejectH0H0:σ12=σ22H1:σ12
≠
σ22FTest:ExampleSolutionFSTAT=1.256isnotintherejectionregion,sowedonotrejectH0(continued)Conclusion:Thereisnotsufficientevidenceofadifferenceinvariancesat=.05F
DCOVAGeneralANOVASettingInvestigatorcontrolsoneormorefactorsofinterestEachfactorcontainstwoormorelevelsLevelscanbenumericalorcategoricalDifferentlevelsproducedifferentgroupsThinkofeachgroupasasamplefromadifferentpopulationObserveeffectsonthedependentvariableArethegroupsthesame?Experimentaldesign:theplanusedtocollectthedataDCOVACompletelyRandomizedDesignExperimentalunits(subjects)areassignedrandomlytogroupsSubjectsareassumedhomogeneousOnlyonefactororindependentvariableWithtwoormorelevelsAnalyzedbyone-factoranalysisofvariance(ANOVA)DCOVAOne-WayAnalysisofVarianceEvaluatethedifferenceamongthemeansofthreeormoregroupsExamples:Numberofaccidentsfor1st,2nd,and3rdshiftExpectedmileageforfivebrandsoftiresAssumptionsPopulationsarenormallydistributedPopulationshaveequalvariancesSamplesarerandomlyandindependentlydrawnDCOVAHypothesesofOne-WayANOVA
Allpopulationmeansareequali.e.,nofactoreffect(novariationinmeansamonggroups)
Atleastonepopulationmeanisdifferenti.e.,thereisafactoreffectDoesnotmeanthatallpopulationmeansaredifferent(somepairsmaybethesame)DCOVAOne-WayANOVAWhenTheNullHypothesisisTrueAllMeansarethesame:(NoFactorEffect)DCOVAOne-WayANOVAWhenTheNullHypothesisisNOTtrueAtleastoneofthemeansisdifferent(FactorEffectispresent)or(continued)DCOVAPartitioningtheVariationTotalvariationcanbesplitintotwoparts:SST=TotalSumofSquares
(Totalvariation)SSA=SumofSquaresAmongGroups
(Among-groupvariation)SSW=SumofSquaresWithinGroups
(Within-groupvariation)SST=SSA+SSWDCOVAPartitioningtheVariationTotalVariation=theaggregatevariationoftheindividualdatavaluesacrossthevariousfactorlevels(SST)Within-GroupVariation=variationthatexistsamongthedatavalueswithinaparticularfactorlevel(SSW)Among-GroupVariation=variationamongthefactorsamplemeans(SSA)SST=SSA+SSW(continued)DCOVAPartitionofTotalVariationVariationDuetoFactor(SSA)VariationDuetoRandomError(SSW)TotalVariation(SST)=+DCOVATotalSumofSquaresWhere:
SST=Totalsumofsquares c=numberofgroupsorlevels
nj=numberofvaluesingroupj
Xij=ithobservationfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVATotalVariation(continued)DCOVAAmong-GroupVariationWhere:
SSA=Sumofsquaresamonggroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVAAmong-GroupVariationVariationDuetoDifferencesAmongGroupsMeanSquareAmong=SSA/degreesoffreedom(continued)DCOVAAmong-GroupVariation(continued)DCOVAWithin-GroupVariationWhere:
SSW=Sumofsquareswithingroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
Xij=ithobservationingroupjSST=SSA+SSWDCOVAWithin-GroupVariationSummingthevariationwithineachgroupandthenaddingoverallgroupsMeanSquareWithin=SSW/degreesoffreedom(continued)DCOVAWithin-GroupVariation(continued)DCOVAObtainingtheMeanSquaresTheMeanSquaresareobtainedbydividingthevarioussumofsquaresbytheirassociateddegreesoffreedomMeanSquareAmong(d.f.=c-1)MeanSquareWithin(d.f.=n-c)MeanSquareTotal(d.f.=n-1)DCOVAOne-WayANOVATableSourceofVariationSumOfSquaresDegreesofFreedomMeanSquare(Variance)AmongGroupsc-1MSA=WithinGroupsSSWn-cMSW=TotalSSTn–1SSAMSAMSWFc=numberofgroupsn=sumofthesamplesizesfromallgroupsdf=degreesoffreedomSSAc-1SSWn-cFSTAT=DCOVAOne-WayANOVA
FTestStatisticTeststatistic
MSAismeansquaresamonggroups MSWismeansquareswithingroupsDegreesoffreedomdf1=c–1(c=numberofgroups)df2=n–c(n=sumofsamplesizesfromallpopulations)H0:μ1=μ2=…
=μcH1:AtleasttwopopulationmeansaredifferentDCOVAInterpretingOne-WayANOVA
FStatisticTheFstatisticistheratiooftheamongestimateofvarianceandthewithinestimateofvarianceTheratiomustalwaysbepositivedf1=c-1willtypicallybesmall
df2=n-cwilltypicallybelargeDecisionRule:RejectH0ifFSTAT>Fα,otherwisedonotrejectH00
RejectH0DonotrejectH0FαDCOVAOne-WayANOVA
FTestExampleYouwanttoseeifthreedifferentgolfclubsyielddifferentdistances.Yourandomlyselectfivemeasurementsfromtrialsonanautomateddrivingmachineforeachclub.Atthe0.05significancelevel,isthereadifferenceinmeandistance?
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204DCOVA?????One-WayANOVAExample:
ScatterPlot270260250240230220210200190??????????Distance
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204Club123DCOVAOne-WayANOVAExampleComputations
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204X1=249.2X2=226.0X3=205.8X=227.0n1=5n2=5n3=5n=15c=3SSA=5(249.2–227)2+5(226–227)2+5(205.8–227)2=4716.4SSW=(254–249.2)2+(263–249.2)2+…+(204–205.8)2=1119.6MSA=4716.4/(3-1)=2358.2MSW=1119.6/(15-3)=93.3DCOVAOne-WayANOVAExampleSolutionH0:μ1=μ2=μ3H1:μjnotallequal
=0.05df1=2df2=12TestStatistic:Decision:Conclusion:RejectH0at
=0.05Thereisevidencethatatleastoneμjdiffersfromtherest0
=.05F0.05=3.89RejectH0DonotrejectH0CriticalValue:Fα
=3.89DCOVASUMMARYGroupsCountSumAverageVarianceClub151246249.2108.2Club25113022677.5Club351029205.894.2ANOVASourceofVariationSSdfMSFP-valueFcritBetweenGroups4716.422358.225.2750.00003.89WithinGroups1119.61293.3Total5836.014
One-WayANOVAExcelOutputDCOVAOne-WayANOVA
MinitabOutputOne-wayANOVA:DistanceversusClubSourceDFSSMSFPClub24716.42358.225.280.000Error121119.693.3Total145836.0S=9.659R-Sq=80.82%R-Sq(adj)=77.62%Individual95%CIsForMeanBasedonPooledStDevLevelNMeanStDev-------+---------+---------+---------+--15249.2010.40(-----*-----)25226.008.80(-----*-----)35205.809.71(-----*-----)-------+---------+---------+---------+--208224240256PooledStDev=9.66DCOVAANOVAAssumptionsRandomnessandIndependenceSelectrandomsamplesfromthecgroups(orrandomlyassignthelevels)NormalityThesamplevaluesforeachgrouparefromanormalpopulationHomogeneityofVarianceAllpopulationssampledfromhavethesamevarianceCanbetestedwithLevene’sTestDCOVAANOVAAssumptions
Levene’sTestTeststheassumptionthatthevariancesofeachpopulationareequal.First,definethenullandalternativehypotheses:H0:σ21=σ22=…=σ2cH1:Notallσ2jareequalSecond,computetheabsolutevalueofthedifferencebetweeneach
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特許經(jīng)營合同:快餐連鎖品牌擴展協(xié)議
- 2025年標識牌原材料供應與質(zhì)量保障合同3篇
- 2024年田土承包經(jīng)營權投資合作合同3篇
- 2024某局礦產(chǎn)資源開發(fā)合同
- 美發(fā)知識培訓課件
- 2024橋涵工程人工承包協(xié)議一
- 《模具知識培訓》課件
- 2024年高速公路護坡工程專項勞務合作合同版B版
- 中國戲曲學院《新媒體策劃》2023-2024學年第一學期期末試卷
- 2024年設備安裝與維修合同6篇
- 代理商工作總結(jié)
- 戰(zhàn)略管理徐飛版
- 2023浙江省杭州市中考語文真題試卷和答案
- 銀行防詐騙知識宣傳
- 【實戰(zhàn)篇】華為IPD流程的應用案例
- spa浴按摩是怎么樣的
- 統(tǒng)編版六年級語文上冊專項 專題04標點符號及作用-原卷版+解析
- Book-1-Unit-3-going-positive教學設計文檔
- 績效管理外文翻譯外文文獻中英翻譯-績效管理外文文獻
- 建立信息共享和預警機制
- 2023年湖北省鄂州市鄂城區(qū)數(shù)學七年級第一學期期末綜合測試試題含解析
評論
0/150
提交評論