商務統(tǒng)計學課件英文版BSFC7e-CH10_第1頁
商務統(tǒng)計學課件英文版BSFC7e-CH10_第2頁
商務統(tǒng)計學課件英文版BSFC7e-CH10_第3頁
商務統(tǒng)計學課件英文版BSFC7e-CH10_第4頁
商務統(tǒng)計學課件英文版BSFC7e-CH10_第5頁
已閱讀5頁,還剩74頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Two-SampleTestsandOne-WayANOVAChapter10ObjectivesInthischapter,youlearn:

HowtousehypothesistestingforcomparingthedifferencebetweenThemeansoftwoindependentpopulationsThemeansoftworelatedpopulationsTheproportionsoftwoindependentpopulationsThevariancesoftwoindependentpopulationsThemeansofmorethantwopopulationsTwo-SampleTestsTwo-SampleTestsPopulationMeans,IndependentSamplesPopulationMeans,RelatedSamplesPopulationVariancesGroup1vs.Group2Samegroupbeforevs.aftertreatmentVariance1vs.Variance2Examples:PopulationProportionsProportion1vs.Proportion2DCOVADifferenceBetweenTwoMeansPopulationmeans,independentsamplesGoal:Testhypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationmeans,μ1–μ2

ThepointestimateforthedifferenceisX1–X2*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVADifferenceBetweenTwoMeans:IndependentSamplesPopulationmeans,independentsamples*UseSptoestimateunknownσ.UseaPooled-Variance

ttest.σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalUseS1andS2toestimateunknownσ1andσ2.UseaSeparate-variancettestDifferentdatasourcesUnrelatedIndependentSampleselectedfromonepopulationhasnoeffectonthesampleselectedfromtheotherpopulationDCOVAHypothesisTestsfor

TwoPopulationMeansLower-tailtest:H0:μ1

μ2H1:μ1<μ2i.e.,H0:μ1–μ2

0H1:μ1–μ2

<0Upper-tailtest:H0:μ1≤μ2H1:μ1

>

μ2i.e.,H0:μ1–μ2

≤0H1:μ1–μ2

>0Two-tailtest:H0:μ1=μ2H1:μ1

μ2i.e.,H0:μ1–μ2

=0H1:μ1–μ2

≠0TwoPopulationMeans,IndependentSamplesDCOVATwoPopulationMeans,IndependentSamplesLower-tailtest:H0:μ1–μ2

0H1:μ1–μ2

<0Upper-tailtest:H0:μ1–μ2

≤0H1:μ1–μ2

>0Two-tailtest:H0:μ1–μ2

=0H1:μ1–μ2

≠0aa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2

ortSTAT>ta/2

Hypothesistestsforμ1–μ2

DCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalAssumptions:

SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownbutassumedequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamplesThepooledvarianceis:Theteststatisticis:WheretSTAThasd.f.=(n1+n2–2)(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalDCOVAPopulationmeans,independentsamplesTheconfidenceintervalfor

μ1–μ2is:Wheretα/2hasd.f.=n1+n2–2*Confidenceintervalforμ1-μ2withσ1andσ2unknownandassumedequalσ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPooled-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:

NYSE

NASDAQ

Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithequalvariances,is

thereadifferenceinmean

yield(

=0.05)?DCOVAPooled-VariancetTestExample:CalculatingtheTestStatisticTheteststatisticis:(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVAPooled-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)

=0.05df=21+25-2=44CriticalValues:t=±2.0154TestStatistic:Decision:Conclusion:RejectH0ata=0.05Thereisevidenceofadifferenceinmeans.t02.0154-2.0154.025RejectH0RejectH0.0252.040DCOVAPooled-VariancetTestExample:ConfidenceIntervalforμ1-μ2SincewerejectedH0canwebe95%confidentthatμNYSE>μNASDAQ?95%ConfidenceIntervalforμNYSE-μNASDAQSince0islessthantheentireinterval,wecanbe95%confidentthatμNYSE>μNASDAQDCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknown,notassumedequalAssumptions:

SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownandcannotbeassumedtobeequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamples(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandnotassumedequalDCOVATheformulaeforthistestarenotcoveredinthisbook.Seereference8fromthischapterformoredetails.ThistestutilizestwoseparatesamplevariancestoestimatethedegreesoffreedomforthettestSeparate-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:

NYSE

NASDAQ

Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithunequalvariances,is

thereadifferenceinmean

yield(

=0.05)?DCOVASeparate-VariancetTestExample:CalculatingtheTestStatistic(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVASeparate-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)

=0.05df=40CriticalValues:t=±2.021TestStatistic:Decision:Conclusion:FailToRejectH0ata=0.05Thereisinsufficientevidenceofadifferenceinmeans.t02.021-2.021.025RejectH0RejectH0.0252.019DCOVARelatedPopulations

ThePairedDifferenceTest

TestsMeansof2RelatedPopulations PairedormatchedsamplesRepeatedmeasures(before/after)Usedifferencebetweenpairedvalues:EliminatesVariationAmongSubjectsAssumptions:DifferencesarenormallydistributedOr,ifnotNormal,uselargesamplesRelatedsamplesDi=X1i-X2iDCOVARelatedPopulations

ThePairedDifferenceTestTheith

paireddifferenceisDi,whereRelatedsamplesDi=X1i-X2i

ThepointestimateforthepaireddifferencepopulationmeanμDisD:nisthenumberofpairsinthepairedsampleThesamplestandarddeviationisSD(continued)DCOVATheteststatisticforμD

is:PairedsamplesWheretSTAThasn-1d.f.ThePairedDifferenceTest:

FindingtSTATDCOVALower-tailtest:H0:μD

0H1:μD<0Upper-tailtest:H0:μD≤0H1:μD

>0Two-tailtest:H0:μD=0H1:μD

≠0PairedSamplesThePairedDifferenceTest:PossibleHypothesesaa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2

ortSTAT>ta/2

WheretSTAThasn-1d.f.DCOVATheconfidenceintervalforμDisPairedsampleswhereThePairedDifferenceConfidenceIntervalDCOVAAssumeyousendyoursalespeopletoa“customerservice”trainingworkshop.Hasthetrainingmadeadifferenceinthenumberofcomplaints?Youcollectthefollowingdata:PairedDifferenceTest:Example

NumberofComplaints:

(2)-(1)Salesperson

Before(1)

After(2)

Difference,

DiC.B. 6

4-2T.F. 20

6-14M.H. 3

2-1R.K. 0

00M.O. 4

0

-4 -21

D=Din

=-4.2DCOVAHasthetrainingmadeadifferenceinthenumberofcomplaints(atthe0.01level)?

-4.2D=H0:μD=0H1:

μD

0TestStatistic:t0.005=±4.604

d.f.=n-1=4Reject

/2

-4.6044.604Decision:

DonotrejectH0(tstatisnotintherejectionregion)Conclusion:

Thereisinsufficientofachangeinthenumberofcomplaints.PairedDifferenceTest:SolutionReject

/2

-1.66

=.01DCOVATheconfidenceintervalforμDis:Sincethisintervalcontains0youare99%confidentthatμD=0ThePairedDifferenceConfidenceInterval--ExampleDCOVAD=-4.2,SD=5.67TwoPopulationProportionsGoal:testahypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationproportions, π1–π2

ThepointestimateforthedifferenceisPopulationproportionsAssumptions:

n1π1

5,n1(1-π1)5n2π2

5,n2(1-π2)5

DCOVATwoPopulationProportionsPopulationproportionsThepooledestimatefortheoverallproportionis:whereX1andX2arethenumberofitemsofinterestinsamples1and2Inthenullhypothesisweassumethenullhypothesisistrue,soweassumeπ1=π2andpoolthetwosampleestimatesDCOVATwoPopulationProportionsPopulationproportionsTheteststatisticforπ1–π2isaZstatistic:(continued)whereDCOVAHypothesisTestsfor

TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1

π2H1:π1<π2i.e.,H0:π1–π2

0H1:π1–π2

<0Upper-tailtest:H0:π1≤π2H1:π1

>

π2i.e.,H0:π1–π2

≤0H1:π1–π2

>0Two-tailtest:H0:π1=π2H1:π1

π2i.e.,H0:π1–π2

=0H1:π1–π2

≠0DCOVAHypothesisTestsfor

TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1–π2

0H1:π1–π2

<0Upper-tailtest:H0:π1–π2

≤0H1:π1–π2

>0Two-tailtest:H0:π1–π2

=0H1:π1–π2

≠0aa/2a/2a-za-za/2zaza/2RejectH0ifZSTAT<-ZaRejectH0ifZSTAT>ZaRejectH0ifZSTAT<-Za/2

orZSTAT>Za/2

(continued)DCOVAHypothesisTestExample:

TwopopulationProportionsIsthereasignificantdifferencebetweentheproportionofmenandtheproportionofwomenwhowillvoteYesonPropositionA?Inarandomsample,36of72menand35of50womenindicatedtheywouldvoteYesTestatthe.05levelofsignificanceDCOVAThehypothesistestis:H0:π1–π2

=0(thetwoproportionsareequal)H1:π1–π2

≠0(thereisasignificantdifferencebetweenproportions)Thesampleproportionsare:Men: p1=36/72=0.50Women: p2=35/50=0.70Thepooledestimatefortheoverallproportionis:HypothesisTestExample:

TwopopulationProportions(continued)DCOVATheteststatisticforπ1–π2is:HypothesisTestExample:

TwoPopulationProportions(continued).025-1.961.96.025-2.20Decision:

RejectH0Conclusion:

Thereisevidenceofasignificantdifferenceintheproportionofmenandwomenwhowillvoteyes.RejectH0RejectH0CriticalValues=±1.96For=.05DCOVAConfidenceIntervalfor

TwoPopulationProportionsPopulationproportionsTheconfidenceintervalfor

π1–π2is:DCOVAConfidenceIntervalforTwoPopulationProportions--ExampleThe95%confidenceintervalforπ1–π2is:Sincethisintervaldoesnotcontain0canbe95%confidentthetwoproportionsaredifferent.DCOVATestingfortheRatioOfTwoPopulationVariancesTestsforTwoPopulationVariancesFteststatisticH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22*Hypotheses FSTATS12/S22S12=Varianceofsample1(thelargersamplevariance)n1=samplesizeofsample1S22=Varianceofsample2(thesmallersamplevariance)n2=samplesizeofsample2n1–1=numeratordegreesoffreedomn2–1=denominatordegreesoffreedomWhere:DCOVATheFcriticalvalue

isfoundfromtheFtableTherearetwodegreesoffreedomrequired:numeratoranddenominatorThelargersamplevarianceisalwaysthenumeratorWhenIntheFtable,numeratordegreesoffreedomdeterminethecolumndenominatordegreesoffreedomdeterminetherowTheFDistributiondf1=n1–1;df2=n2–1DCOVAFindingtheRejectionRegionH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22F

0

RejectH0DonotrejectH0RejectH0ifFSTAT>FαF

0

/2RejectH0DonotrejectH0Fα/2

RejectH0ifFSTAT>Fα/2DCOVAFTest:AnExampleYouareafinancialanalystforabrokeragefirm.YouwanttocomparedividendyieldsbetweenstockslistedontheNYSE&NASDAQ.Youcollectthefollowingdata:

NYSE

NASDAQ

Number 21 25Mean 3.27 2.53Stddev 1.30 1.16Isthereadifferenceinthe variancesbetweentheNYSE &NASDAQatthe

=

0.05level?DCOVAFormthehypothesistest:H0:σ21=σ22(thereisnodifferencebetweenvariances)H1:σ21≠σ22(thereisadifferencebetweenvariances)FTest:ExampleSolutionFindtheFcriticalvaluefor

=0.05:Numeratord.f.=n1–1=21–1=20Denominatord.f.=n2–1=25–1=24Fα/2=F.025,20,24=2.33DCOVATheteststatisticis:0

/2=.025F0.025=2.33RejectH0DonotrejectH0H0:σ12=σ22H1:σ12

σ22FTest:ExampleSolutionFSTAT=1.256isnotintherejectionregion,sowedonotrejectH0(continued)Conclusion:Thereisnotsufficientevidenceofadifferenceinvariancesat=.05F

DCOVAGeneralANOVASettingInvestigatorcontrolsoneormorefactorsofinterestEachfactorcontainstwoormorelevelsLevelscanbenumericalorcategoricalDifferentlevelsproducedifferentgroupsThinkofeachgroupasasamplefromadifferentpopulationObserveeffectsonthedependentvariableArethegroupsthesame?Experimentaldesign:theplanusedtocollectthedataDCOVACompletelyRandomizedDesignExperimentalunits(subjects)areassignedrandomlytogroupsSubjectsareassumedhomogeneousOnlyonefactororindependentvariableWithtwoormorelevelsAnalyzedbyone-factoranalysisofvariance(ANOVA)DCOVAOne-WayAnalysisofVarianceEvaluatethedifferenceamongthemeansofthreeormoregroupsExamples:Numberofaccidentsfor1st,2nd,and3rdshiftExpectedmileageforfivebrandsoftiresAssumptionsPopulationsarenormallydistributedPopulationshaveequalvariancesSamplesarerandomlyandindependentlydrawnDCOVAHypothesesofOne-WayANOVA

Allpopulationmeansareequali.e.,nofactoreffect(novariationinmeansamonggroups)

Atleastonepopulationmeanisdifferenti.e.,thereisafactoreffectDoesnotmeanthatallpopulationmeansaredifferent(somepairsmaybethesame)DCOVAOne-WayANOVAWhenTheNullHypothesisisTrueAllMeansarethesame:(NoFactorEffect)DCOVAOne-WayANOVAWhenTheNullHypothesisisNOTtrueAtleastoneofthemeansisdifferent(FactorEffectispresent)or(continued)DCOVAPartitioningtheVariationTotalvariationcanbesplitintotwoparts:SST=TotalSumofSquares

(Totalvariation)SSA=SumofSquaresAmongGroups

(Among-groupvariation)SSW=SumofSquaresWithinGroups

(Within-groupvariation)SST=SSA+SSWDCOVAPartitioningtheVariationTotalVariation=theaggregatevariationoftheindividualdatavaluesacrossthevariousfactorlevels(SST)Within-GroupVariation=variationthatexistsamongthedatavalueswithinaparticularfactorlevel(SSW)Among-GroupVariation=variationamongthefactorsamplemeans(SSA)SST=SSA+SSW(continued)DCOVAPartitionofTotalVariationVariationDuetoFactor(SSA)VariationDuetoRandomError(SSW)TotalVariation(SST)=+DCOVATotalSumofSquaresWhere:

SST=Totalsumofsquares c=numberofgroupsorlevels

nj=numberofvaluesingroupj

Xij=ithobservationfromgroupj

X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVATotalVariation(continued)DCOVAAmong-GroupVariationWhere:

SSA=Sumofsquaresamonggroups c=numberofgroups

nj=samplesizefromgroupj

Xj=samplemeanfromgroupj

X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVAAmong-GroupVariationVariationDuetoDifferencesAmongGroupsMeanSquareAmong=SSA/degreesoffreedom(continued)DCOVAAmong-GroupVariation(continued)DCOVAWithin-GroupVariationWhere:

SSW=Sumofsquareswithingroups c=numberofgroups

nj=samplesizefromgroupj

Xj=samplemeanfromgroupj

Xij=ithobservationingroupjSST=SSA+SSWDCOVAWithin-GroupVariationSummingthevariationwithineachgroupandthenaddingoverallgroupsMeanSquareWithin=SSW/degreesoffreedom(continued)DCOVAWithin-GroupVariation(continued)DCOVAObtainingtheMeanSquaresTheMeanSquaresareobtainedbydividingthevarioussumofsquaresbytheirassociateddegreesoffreedomMeanSquareAmong(d.f.=c-1)MeanSquareWithin(d.f.=n-c)MeanSquareTotal(d.f.=n-1)DCOVAOne-WayANOVATableSourceofVariationSumOfSquaresDegreesofFreedomMeanSquare(Variance)AmongGroupsc-1MSA=WithinGroupsSSWn-cMSW=TotalSSTn–1SSAMSAMSWFc=numberofgroupsn=sumofthesamplesizesfromallgroupsdf=degreesoffreedomSSAc-1SSWn-cFSTAT=DCOVAOne-WayANOVA

FTestStatisticTeststatistic

MSAismeansquaresamonggroups MSWismeansquareswithingroupsDegreesoffreedomdf1=c–1(c=numberofgroups)df2=n–c(n=sumofsamplesizesfromallpopulations)H0:μ1=μ2=…

=μcH1:AtleasttwopopulationmeansaredifferentDCOVAInterpretingOne-WayANOVA

FStatisticTheFstatisticistheratiooftheamongestimateofvarianceandthewithinestimateofvarianceTheratiomustalwaysbepositivedf1=c-1willtypicallybesmall

df2=n-cwilltypicallybelargeDecisionRule:RejectH0ifFSTAT>Fα,otherwisedonotrejectH00

RejectH0DonotrejectH0FαDCOVAOne-WayANOVA

FTestExampleYouwanttoseeifthreedifferentgolfclubsyielddifferentdistances.Yourandomlyselectfivemeasurementsfromtrialsonanautomateddrivingmachineforeachclub.Atthe0.05significancelevel,isthereadifferenceinmeandistance?

Club1

Club2

Club3

254 234 200

263 218 222

241 235 197

237 227 206

251 216 204DCOVA?????One-WayANOVAExample:

ScatterPlot270260250240230220210200190??????????Distance

Club1

Club2

Club3

254 234 200

263 218 222

241 235 197

237 227 206

251 216 204Club123DCOVAOne-WayANOVAExampleComputations

Club1

Club2

Club3

254 234 200

263 218 222

241 235 197

237 227 206

251 216 204X1=249.2X2=226.0X3=205.8X=227.0n1=5n2=5n3=5n=15c=3SSA=5(249.2–227)2+5(226–227)2+5(205.8–227)2=4716.4SSW=(254–249.2)2+(263–249.2)2+…+(204–205.8)2=1119.6MSA=4716.4/(3-1)=2358.2MSW=1119.6/(15-3)=93.3DCOVAOne-WayANOVAExampleSolutionH0:μ1=μ2=μ3H1:μjnotallequal

=0.05df1=2df2=12TestStatistic:Decision:Conclusion:RejectH0at

=0.05Thereisevidencethatatleastoneμjdiffersfromtherest0

=.05F0.05=3.89RejectH0DonotrejectH0CriticalValue:Fα

=3.89DCOVASUMMARYGroupsCountSumAverageVarianceClub151246249.2108.2Club25113022677.5Club351029205.894.2ANOVASourceofVariationSSdfMSFP-valueFcritBetweenGroups4716.422358.225.2750.00003.89WithinGroups1119.61293.3Total5836.014

One-WayANOVAExcelOutputDCOVAOne-WayANOVA

MinitabOutputOne-wayANOVA:DistanceversusClubSourceDFSSMSFPClub24716.42358.225.280.000Error121119.693.3Total145836.0S=9.659R-Sq=80.82%R-Sq(adj)=77.62%Individual95%CIsForMeanBasedonPooledStDevLevelNMeanStDev-------+---------+---------+---------+--15249.2010.40(-----*-----)25226.008.80(-----*-----)35205.809.71(-----*-----)-------+---------+---------+---------+--208224240256PooledStDev=9.66DCOVAANOVAAssumptionsRandomnessandIndependenceSelectrandomsamplesfromthecgroups(orrandomlyassignthelevels)NormalityThesamplevaluesforeachgrouparefromanormalpopulationHomogeneityofVarianceAllpopulationssampledfromhavethesamevarianceCanbetestedwithLevene’sTestDCOVAANOVAAssumptions

Levene’sTestTeststheassumptionthatthevariancesofeachpopulationareequal.First,definethenullandalternativehypotheses:H0:σ21=σ22=…=σ2cH1:Notallσ2jareequalSecond,computetheabsolutevalueofthedifferencebetweeneach

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論