版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津市薊州區(qū)馬伸橋中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的左、右焦點(diǎn)分別為、,過點(diǎn)且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點(diǎn),若,則雙曲線C的離心率為()A. B.C. D.2.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè),則A.2 B.3C.4 D.54.在棱長(zhǎng)為4的正方體中,為的中點(diǎn),點(diǎn)P在正方體各棱及表面上運(yùn)動(dòng)且滿足,則點(diǎn)P軌跡圍成的圖形的面積為()A. B.C. D.5.2021年小林大學(xué)畢業(yè)后,9月1日開始工作,他決定給自己開一張儲(chǔ)蓄銀行卡,每月的10號(hào)存錢至該銀行卡(假設(shè)當(dāng)天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個(gè)月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達(dá)到1萬元的時(shí)間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日6.函數(shù)為的導(dǎo)函數(shù),令,則下列關(guān)系正確的是()A. B.C. D.7.北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用,在數(shù)學(xué)上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點(diǎn)的曲率等于與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和.例如:正四面體在每個(gè)頂點(diǎn)有個(gè)面角,每個(gè)面角是,所以正四面體在每個(gè)頂點(diǎn)的曲率為,故其總曲率為.給出下列三個(gè)結(jié)論:①正方體在每個(gè)頂點(diǎn)的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點(diǎn)數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③C.②③ D.①②③8.若用面積為48的矩形ABCD截某圓錐得到一個(gè)橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.9.如圖是函數(shù)的導(dǎo)函數(shù)的圖象,下列說法正確的是()A.函數(shù)在上是增函數(shù)B.函數(shù)在上是減函數(shù)C.是函數(shù)的極小值點(diǎn)D.是函數(shù)的極大值點(diǎn)10.已知實(shí)數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.11.為推動(dòng)黨史學(xué)習(xí)教育各項(xiàng)工作扎實(shí)開展,營(yíng)造“學(xué)黨史、悟思想、辦實(shí)事、開新局”的濃厚氛圍,某校黨委計(jì)劃將中心組學(xué)習(xí)、專題報(bào)告會(huì)、黨員活動(dòng)日、主題班會(huì)、主題團(tuán)日這五種活動(dòng)分5個(gè)階段安排,以推動(dòng)黨史學(xué)習(xí)教育工作的進(jìn)行,若主題班會(huì)、主題團(tuán)日這兩個(gè)階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動(dòng)日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種12.方程表示的曲線是()A.一個(gè)橢圓和一個(gè)點(diǎn) B.一個(gè)雙曲線的右支和一條直線C.一個(gè)橢圓一部分和一條直線 D.一個(gè)橢圓二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點(diǎn)P()處的切線方程是,則_____14.已知是定義在上的奇函數(shù),當(dāng)時(shí),則當(dāng)時(shí)___________.15.過圓上一點(diǎn)的圓的切線的一般式方程為________16.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,直線與橢圓C的另一個(gè)交點(diǎn)為B,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)為常數(shù),函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)的圖象與直線相切,求實(shí)數(shù)的值;(3)當(dāng)時(shí),在上有兩個(gè)極值點(diǎn)且恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知為數(shù)列的前項(xiàng)和,且.(1)求的通項(xiàng)公式;(2)若,求的前項(xiàng)和.19.(12分)已知圓C的方程為.(1)直線l1過點(diǎn)P(3,1),傾斜角為45°,且與圓C交于A,B兩點(diǎn),求AB的長(zhǎng);(2)求過點(diǎn)P(3,1)且與圓C相切的直線l2的方程.20.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),試證明:21.(12分)如圖,在棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為AB,BC上的動(dòng)點(diǎn),且.(1)求證:;(2)當(dāng)時(shí),求點(diǎn)A到平面的距離.22.(10分)已知橢圓過點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于A、B兩點(diǎn),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,且,可得,再結(jié)合,可得,進(jìn)而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因?yàn)椋?,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因?yàn)?,所?故選:C.【點(diǎn)睛】方法點(diǎn)睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關(guān)系,利用求解;(2)根據(jù)條件列出的齊次方程,利用轉(zhuǎn)化為關(guān)于的方程,解方程即可,注意根據(jù)對(duì)所得解進(jìn)行取舍.2、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計(jì)算說明“若q則p”的真假即可判斷作答.【詳解】因?yàn)?,由得:,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A3、B【解析】利用復(fù)數(shù)的除法運(yùn)算求出,進(jìn)而可得到.【詳解】,則,故,選B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題4、A【解析】構(gòu)造輔助線,找到點(diǎn)P軌跡圍成的圖形為長(zhǎng)方形,從而求出面積.【詳解】取的中點(diǎn)E,的中點(diǎn)F,連接BE,EF,AF,則由于為的中點(diǎn),可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因?yàn)锽EEF=E,所以CN⊥平面ABEF,所以點(diǎn)P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A5、C【解析】分析可得每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為,分析首次達(dá)到1萬元的值,即得解【詳解】依題意可知,小林從第一個(gè)月開始,每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為.因?yàn)闉樵龊瘮?shù),且,所以第14個(gè)月的10號(hào)存完錢后,他這張銀行卡賬上存錢總額首次達(dá)到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達(dá)到1萬元.故選:C6、B【解析】求導(dǎo)后,令,可求得,再利用導(dǎo)數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因?yàn)?,所以,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:比較大小的關(guān)鍵是知道的單調(diào)性,利用導(dǎo)數(shù)可得的單調(diào)性.7、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個(gè)頂點(diǎn)的曲率為,故①正確;②由定義可得多面體的總曲率頂點(diǎn)數(shù)各面內(nèi)角和,因?yàn)樗睦忮F有5個(gè)頂點(diǎn),5個(gè)面,分別為4個(gè)三角形和1個(gè)四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個(gè)面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.8、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項(xiàng)判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長(zhǎng)分別為,由矩形面積為48,得,對(duì)于選項(xiàng)B,D由于,不符合條件,不正確.對(duì)于選項(xiàng)A,,滿足題意.對(duì)于選項(xiàng)C,不正確.故選:A.9、A【解析】根據(jù)圖象,結(jié)合導(dǎo)函數(shù)的正負(fù)性、極值的定義逐一判斷即可.【詳解】由圖象可知,當(dāng)時(shí),;當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,可知B錯(cuò)誤,A正確;是極大值點(diǎn),沒有極小值,和不是函數(shù)的極值點(diǎn),可知C,D錯(cuò)誤故選:A10、D【解析】利用特殊值排除錯(cuò)誤選項(xiàng),利用函數(shù)單調(diào)性證明正確選項(xiàng).【詳解】時(shí),,但,所以A選項(xiàng)錯(cuò)誤.時(shí),,但,所以B選項(xiàng)錯(cuò)誤.時(shí),,但,所以C選項(xiàng)錯(cuò)誤.在上遞增,所以,即D選項(xiàng)正確.故選:D11、A【解析】對(duì)中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會(huì)、主題團(tuán)日在第二、三階段,則其它活動(dòng)有2種方法;主題班會(huì)、主題團(tuán)日在第三、四階段,則其它活動(dòng)有1種方法;主題班會(huì)、主題團(tuán)日在第四、五階段,則其它活動(dòng)有1種方法,則此時(shí)共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個(gè)階段有種方法.綜合得不同的安排方案共有10種.故選:A12、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個(gè)橢圓的一部分和一條直線.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:14、【解析】當(dāng)時(shí),利用及求得函數(shù)的解析式.【詳解】當(dāng)時(shí),,由于函數(shù)是奇函數(shù),故.【點(diǎn)睛】本小題主要考查已知函數(shù)的奇偶性以及軸一側(cè)的解析式,求另一側(cè)的解析式,屬于基礎(chǔ)題.15、【解析】求出過切線的半徑所在直線斜率,由垂直關(guān)系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點(diǎn)睛】本題考查求過圓上一點(diǎn)的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程16、【解析】求出直線的方程,聯(lián)立方程,求得B點(diǎn)的坐標(biāo),從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2)7;(3)【解析】(1)根據(jù)題意求得,討論,,,時(shí)解,即可得出函數(shù)的單調(diào)區(qū)間;(2)設(shè)切點(diǎn)為則結(jié)合,得令通過求導(dǎo)研究單調(diào)性解得進(jìn)而解出的值.(3)由已知可得解析式,觀察有,求導(dǎo)得原題意可轉(zhuǎn)化為函數(shù)在上有兩個(gè)不同零點(diǎn).結(jié)合根分布可得,函數(shù)的兩個(gè)極值點(diǎn)為是在上的兩個(gè)不同零點(diǎn)可得且,代入函數(shù)中令通過單調(diào)性求出進(jìn)而可得答案.【詳解】解:(1),令,解得:①當(dāng)時(shí),由得,由得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增;③當(dāng)時(shí),恒成立,所以上單調(diào)遞增.④當(dāng)時(shí),由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增.綜上:①當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;③當(dāng)時(shí),在上單調(diào)遞增.④當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)設(shè)切點(diǎn)為則(*),由可得(**),聯(lián)立(*)(**)可得,設(shè)則,所以在單調(diào)遞增,在單調(diào)遞減,又,所以,所以.(3)由已知可得令由題意知在上有兩個(gè)不同零點(diǎn).則,因?yàn)楹瘮?shù)的兩個(gè)極值點(diǎn)為,則和是在上的兩個(gè)不同零點(diǎn).所以且,所以令則所以在上單調(diào)遞增,所以有其中,即又恒成立,所以故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】方法點(diǎn)睛:已知不等式恒成立求參數(shù)值(取值范圍)問題常用的方法:(1)函數(shù)法:討論參數(shù)范圍,借助函數(shù)單調(diào)性求解;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域或最值問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.18、(1)(2)【解析】(1)由與的關(guān)系結(jié)合等比數(shù)列的定義得出的通項(xiàng)公式;(2)由(1)得出,再由錯(cuò)位相減法得出的前項(xiàng)和.【小問1詳解】因?yàn)?,所以?dāng)時(shí),,所以.當(dāng)時(shí),,兩式相減,得,所以,所以,所以是以1為首項(xiàng),2為公比的等比數(shù)列,所以.【小問2詳解】由(1)得,所以,兩邊同乘以,得,兩式相減,得,所以.19、(1)(2)x=3或【解析】(1)首先利用點(diǎn)斜式求出直線的方程,再利用點(diǎn)到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計(jì)算可得;(2)依題意可得點(diǎn)在圓外,分直線的斜率存在與不存在兩種情況討論,當(dāng)直線的斜率不存在直線得到直線方程,但直線的斜率存在時(shí)設(shè)直線方程為,利用點(diǎn)到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點(diǎn)在圓外,分兩種情況討論:當(dāng)直線的斜率不存在時(shí),過點(diǎn)的直線方程是,此時(shí)與圓C:相切,滿足題意;當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,即,直線與圓相切時(shí),圓心到直線的距離為解得此時(shí),直線的方程為,所以滿足條件的直線的方程是或.20、(1)答案見解析(2)證明見解析【解析】(1)依據(jù)導(dǎo)函數(shù)判定函數(shù)的單調(diào)性即可;(2)等價(jià)轉(zhuǎn)化和構(gòu)造新函數(shù)在不等式證明中可以起到關(guān)鍵性作用.【小問1詳解】的定義域?yàn)?,?dāng)時(shí),令得,當(dāng)時(shí),;當(dāng)時(shí),所以在和上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,存在兩個(gè)極值點(diǎn),則有二正根,由,得由于的兩個(gè)極值點(diǎn)滿足,所以,不妨設(shè),則由于,所以等價(jià)于設(shè)函數(shù),在單調(diào)遞減,又,從而所以,故.【點(diǎn)睛】導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,?;癁椴坏仁胶愠闪栴}.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理21、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結(jié)合求點(diǎn)到面距離的向量法即可得出結(jié)果.【小問1詳解】證明:如圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版八年級(jí)物理上冊(cè)《第三章光的折射、透鏡》章末測(cè)試卷含答案
- 人教版新課標(biāo)四年級(jí)數(shù)學(xué)(上、下兩冊(cè))教案
- 新課標(biāo)人教版小學(xué)一年級(jí)語文下冊(cè)全冊(cè)教案
- 高一化學(xué)第二單元化學(xué)物質(zhì)及其變化第一講物質(zhì)的分類練習(xí)題
- 2024屆河南省開封市重點(diǎn)中學(xué)高考化學(xué)押題試卷含解析
- 2024高中地理第一章地理環(huán)境與區(qū)域發(fā)展第一節(jié)地理環(huán)境對(duì)區(qū)域發(fā)展的影響練習(xí)含解析新人教版必修3
- 2024高中語文第一單元第1課小石城山記課時(shí)作業(yè)含解析粵教版選修唐宋散文蚜
- 2024高中語文第四單元新聞和報(bào)告文學(xué)第11課包身工課時(shí)作業(yè)含解析新人教版必修1
- 2024高考地理一輪復(fù)習(xí)特色篇七普通坐標(biāo)圖與統(tǒng)計(jì)表格練習(xí)含解析
- 總部考核減免申請(qǐng)書模板
- 2024年1月自考18960禮儀學(xué)試題及答案含解析
- Vue.js前端開發(fā)實(shí)戰(zhàn)(第2版)-教學(xué)課件 第1章 初識(shí)Vue
- 事業(yè)單位年度考核實(shí)施方案
- 2024-2029年中國(guó)中藥煎藥機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 腰椎間盤突出疑難病例討論
- 2023-2024學(xué)年度人教版四年級(jí)語文上冊(cè)寒假作業(yè)
- 竣工驗(yàn)收消防查驗(yàn)和消防驗(yàn)收
- 衛(wèi)生院崗位風(fēng)險(xiǎn)分級(jí)和監(jiān)管制度工作方案
- 2016-2023年大慶醫(yī)學(xué)高等??茖W(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 陜西麟游風(fēng)電吊裝方案專家論證版
- 供應(yīng)商審核培訓(xùn)教程
評(píng)論
0/150
提交評(píng)論