版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省沈陽(yáng)市五校協(xié)作體2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)P為拋物線(xiàn)y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.2.在四棱錐中,四邊形為菱形,平面,是中點(diǎn),下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面3.已知正方體中,分別為棱的中點(diǎn),則直線(xiàn)與所成角的余弦值為()A. B.C. D.4.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,5.已知,且,則的最大值為()A. B.C. D.6.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點(diǎn),BE,DH的交點(diǎn)為G,則的化簡(jiǎn)結(jié)果為()A. B.C. D.7.已知拋物線(xiàn)x2=4y上有一條長(zhǎng)為6的動(dòng)弦AB,則AB的中點(diǎn)到x軸的最短距離為()A. B.C.1 D.28.中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,則等于()A. B.C. D.9.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來(lái)后,三人對(duì)去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對(duì)了一半(關(guān)于去向的地點(diǎn)僅對(duì)一個(gè)).根據(jù)以上信息,可判斷下面說(shuō)法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南10.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線(xiàn)大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線(xiàn)的一段近似看成雙曲線(xiàn)下支的一部分,離心率為,則該雙曲線(xiàn)的漸近線(xiàn)方程為()A. B.C. D.11.函數(shù)的大致圖象是()A. B.C. D.12.設(shè)函數(shù),則曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在銳角中,角A,B,C的對(duì)邊分別為a,b,c.若,,,則的面積為_(kāi)________14.點(diǎn)為雙曲線(xiàn)上一點(diǎn),為焦點(diǎn),如果則雙曲線(xiàn)的離心率為_(kāi)__________.15.有一組數(shù)據(jù):,其平均數(shù)是,則其方差是________.16.已知數(shù)列是等差數(shù)列,若,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系內(nèi),橢圓E:過(guò)點(diǎn),離心率為(1)求E的方程;(2)設(shè)直線(xiàn)(k∈R)與橢圓E交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使得對(duì)任意實(shí)數(shù)k,直線(xiàn)AM,BM的斜率乘積為定值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由18.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值19.(12分)在中,,,請(qǐng)?jiān)購(gòu)臈l件①、條件②這兩個(gè)條件中選擇一個(gè)作為已知,然后解答下列問(wèn)題.(1)求角的大小;(2)求的面積.條件①:;條件②:.20.(12分)已知橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸且焦點(diǎn)在軸上,拋物線(xiàn):,若拋物線(xiàn)的焦點(diǎn)在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線(xiàn)滿(mǎn)足:與橢圓相交于不同兩點(diǎn)、,與直線(xiàn)相交于點(diǎn).若橢圓上一動(dòng)點(diǎn)滿(mǎn)足:,,且存在點(diǎn),使得恒為定值,求的值.21.(12分)已知數(shù)列的前項(xiàng)和為,且.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)設(shè):,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線(xiàn)的定義得出當(dāng)點(diǎn)P在拋物線(xiàn)的頂點(diǎn)時(shí),|PF|取最小值.【詳解】根據(jù)題意,設(shè)拋物線(xiàn)y=2x2上點(diǎn)P到準(zhǔn)線(xiàn)的距離為d,則有|PF|=d,拋物線(xiàn)的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線(xiàn)方程為y=-,∴當(dāng)點(diǎn)P在拋物線(xiàn)的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D2、D【解析】利用反證法可判斷A選項(xiàng);利用面面垂直的性質(zhì)可判斷BC選項(xiàng);利用面面垂直的判定可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),因?yàn)樗倪呅螢榱庑?,則,平面,平面,平面,若平面,因?yàn)?,則平面平面,事實(shí)上,平面與平面相交,假設(shè)不成立,A錯(cuò);對(duì)于B選項(xiàng),過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),平面,平面,則,,,平面,而過(guò)作平面的垂線(xiàn),有且只有一條,故與平面不垂直,B錯(cuò);對(duì)于C選項(xiàng),過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫?,平面,則,,,則平面,若平面平面,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫嫫矫?,平面平面,平面,平面,而過(guò)點(diǎn)作平面的垂線(xiàn),有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯(cuò);對(duì)于D選項(xiàng),因?yàn)樗倪呅螢榱庑危瑒t,平面,平面,,,平面,因?yàn)槠矫?,因此,平面平面平面,D對(duì).故選:D.3、D【解析】以D為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,B,D1點(diǎn)的坐標(biāo),利用直線(xiàn)夾角的向量求法求解【詳解】如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長(zhǎng)為2,則,,,,,直線(xiàn)與所成角的余弦值為:.故選D【點(diǎn)睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題4、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對(duì)于A,由,所以,,共面;對(duì)于B,由,所以,,共面;對(duì)于D,,所以,,共面,故選:C.5、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時(shí)取等號(hào)),的最大值為.故選:A.6、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線(xiàn)定理可知,再利用向量的加法運(yùn)算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點(diǎn),,,故選:D7、D【解析】由題意知,拋物線(xiàn)的準(zhǔn)線(xiàn)l:y=-1,過(guò)A作AA1⊥l于A1,過(guò)B作BB1⊥l于B1,設(shè)弦AB的中點(diǎn)為M,過(guò)M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線(xiàn)的焦點(diǎn)),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.8、A【解析】由題得,進(jìn)而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A9、D【解析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對(duì)了一半,假設(shè)甲去了北京正確,對(duì)于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對(duì)于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿(mǎn)足題意,故甲去了云南.故選:D10、B【解析】求出的值,可得出雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】由已知可得,因此,該雙曲線(xiàn)的漸近線(xiàn)方程為.故選:B.11、A【解析】由得出函數(shù)是奇函數(shù),再求得,,運(yùn)用排除法可得選項(xiàng).【詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以排除B;因?yàn)?,所以排除D;因?yàn)?,所以排除C,故選:A.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)圖象的辨識(shí)可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱(chēng)性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.12、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線(xiàn)的斜率為,所以切線(xiàn)方程為,即,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)求出,由向量數(shù)量積得到,使用余弦定理得到方程組,求出,利用面積公式求出結(jié)果.【詳解】因?yàn)?,所以,即,而因?yàn)槭卿J角三角形,所以,所以,所以,因?yàn)?,所以,即,因?yàn)椋?,整理得:①,其中,即,因?yàn)?,所以,即,解得:②,把②代入①得:,解得:,則的面積為.故答案為:14、【解析】利用雙曲線(xiàn)的定義、離心率的計(jì)算公式、兩角和差的正弦公式即可得出.【詳解】由可得,根據(jù)雙曲線(xiàn)的定義可得:,.故答案為:15、2【解析】先按照平均數(shù)算出a,再按照方差的定義計(jì)算即可?!驹斀狻俊?,所以,方差,故答案為:2.16、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過(guò)的點(diǎn)列出方程組,求出,得到橢圓方程;(2)假設(shè)存在,設(shè)出直線(xiàn),聯(lián)立橢圓,利用韋達(dá)定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問(wèn)1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問(wèn)2詳解】設(shè)存在點(diǎn)滿(mǎn)足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當(dāng)且僅當(dāng),解得或此時(shí),或所以,存在定點(diǎn)或者滿(mǎn)足條件18、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線(xiàn)面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問(wèn)2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為19、(1)條件選擇見(jiàn)解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問(wèn)1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問(wèn)2詳解】解:由三角形的面積公式可得.20、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設(shè)而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進(jìn)行等價(jià)轉(zhuǎn)化,再與恒為定值進(jìn)行聯(lián)系,即可求得的值.【小問(wèn)1詳解】由條件可設(shè)橢圓:,因?yàn)閽佄锞€(xiàn):的焦點(diǎn)為,所以,解得因?yàn)闄E圓離心率為,所以,則,故橢圓的方程為【小問(wèn)2詳解】設(shè)直線(xiàn):,,,把直線(xiàn)的方程代入橢圓的方程,可得,所以,因?yàn)?,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因?yàn)椋炙裕詫⒋氲?,所以,?【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問(wèn)題直觀(guān)化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷。21、(1);(2).【解析】(1)利用,結(jié)合已知條件,即可容易求得通項(xiàng)公式;(2)根據(jù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- idc租賃服務(wù)合同范例
- 存貨質(zhì)押合同范本
- 企業(yè)員工招聘合同范本
- 農(nóng)村安裝路燈合同范例
- 兼職配音協(xié)議合同范本
- 照明燈具采購(gòu)合同范本
- 工業(yè)固體廢物處置合同范本
- 冰箱保養(yǎng)合同范本
- 天籟侗歌苗寨傳
- 2025年度國(guó)際知識(shí)產(chǎn)權(quán)轉(zhuǎn)讓合同范本(含專(zhuān)利保護(hù))
- 施工周報(bào)表(標(biāo)準(zhǔn)模版)
- 4.5MWp分布式光伏項(xiàng)目主要設(shè)備材料清單(建筑工程安裝工程)
- von frey絲K值表完整版
- 云南省普通初中學(xué)生成長(zhǎng)記錄模板-好ok
- SB/T 10415-2007雞粉調(diào)味料
- 考古繪圖基礎(chǔ)
- GB/T 32574-2016抽水蓄能電站檢修導(dǎo)則
- 《社會(huì)主義市場(chǎng)經(jīng)濟(jì)理論(第三版)》第十三章社會(huì)主義市場(chǎng)經(jīng)濟(jì)標(biāo)準(zhǔn)論
- 變更索賠案例分析
- 過(guò)敏性休克的急救及處理流程教材課件(28張)
- 《花婆婆》兒童繪本故事
評(píng)論
0/150
提交評(píng)論