版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
3.2雙曲線的簡(jiǎn)單性質(zhì)課時(shí)目標(biāo)了解雙曲線的范圍、對(duì)稱(chēng)性、頂點(diǎn)、離心率、漸近線等幾何性質(zhì),會(huì)根據(jù)幾何性質(zhì)求雙曲線方程,及學(xué)會(huì)由雙曲線的方程研究幾何性質(zhì).1.雙曲線的簡(jiǎn)單幾何性質(zhì)標(biāo)準(zhǔn)方程eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)范圍對(duì)稱(chēng)性關(guān)于______軸對(duì)稱(chēng)關(guān)于原點(diǎn)對(duì)稱(chēng)頂點(diǎn)(a,0),(-a,0)漸近線y=±eq\f(a,b)x離心率e=eq\f(c,a)>12.(1)雙曲線的對(duì)稱(chēng)中心叫做雙曲線的________;(2)雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1的兩個(gè)頂點(diǎn)為A1(-a,0)、A2(a,0).設(shè)B1(0,-b)、B2(0,b),線段A1A2叫做雙曲線的________,它的長(zhǎng)等于2a,a叫做雙曲線的半實(shí)軸長(zhǎng),線段B1B2叫做雙曲線的________,它的長(zhǎng)等于2b,b叫做雙曲線的半虛軸長(zhǎng).實(shí)軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線,等軸雙曲線的漸近線方程為y=±x.(3)當(dāng)雙曲線的離心率e由小變大時(shí),雙曲線的形狀就從扁狹逐漸變得________,原因是eq\f(b,a)=eq\r(e2-1),當(dāng)e增大時(shí),eq\f(b,a)也增大,漸近線的斜率的絕對(duì)值________.一、選擇題1.下列曲線中離心率為eq\f(\r(6),2)的是()A.eq\f(x2,2)-eq\f(y2,4)=1B.eq\f(x2,4)-eq\f(y2,2)=1C.eq\f(x2,4)-eq\f(y2,6)=1D.eq\f(x2,4)-eq\f(y2,10)=12.雙曲線eq\f(x2,25)-eq\f(y2,4)=1的漸近線方程是()A.y=±eq\f(2,5)xB.y=±eq\f(5,2)xC.y=±eq\f(4,25)xD.y=±eq\f(25,4)x3.雙曲線與橢圓4x2+y2=1有相同的焦點(diǎn),它的一條漸近線方程為y=eq\r(2)x,則雙曲線的方程為()A.2x2-4y2=1B.2x2-4y2=2C.2y2-4x2=1D.2y2-4x2=34.設(shè)雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的虛軸長(zhǎng)為2,焦距為2eq\r(3),則雙曲線的漸近線方程為()A.y=±eq\r(2)xB.y=±2xC.y=±eq\f(\r(2),2)xD.y=±eq\f(1,2)x5.直線l過(guò)點(diǎn)(eq\r(2),0)且與雙曲線x2-y2=2僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條B.2條C.3條D.4條6.已知雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為()A.eq\f(4,3)B.eq\f(5,3)C.2D.eq\f(7,3)題號(hào)123456答案二、填空題7.兩個(gè)正數(shù)a、b的等差中項(xiàng)是eq\f(5,2),一個(gè)等比中項(xiàng)是eq\r(6),且a>b,則雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1的離心率e=______.8.在△ABC中,a,b,c分別是∠A,∠B,∠C的對(duì)邊,且a=10,c-b=6,則頂點(diǎn)A運(yùn)動(dòng)的軌跡方程是________________.9.與雙曲線eq\f(x2,9)-eq\f(y2,16)=1有共同的漸近線,并且經(jīng)過(guò)點(diǎn)(-3,2eq\r(3))的雙曲線方程為_(kāi)_________.三、解答題10.根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.(1)經(jīng)過(guò)點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(15,4),3)),且一條漸近線為4x+3y=0;(2)P(0,6)與兩個(gè)焦點(diǎn)連線互相垂直,與兩個(gè)頂點(diǎn)連線的夾角為eq\f(π,3).11.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為eq\r(2),且過(guò)點(diǎn)(4,-eq\r(10)).(1)求此雙曲線的方程;(2)若點(diǎn)M(3,m)在雙曲線上,求證:MF1⊥MF2;(3)求△F1MF2的面積.能力提升12.設(shè)雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為()A.eq\r(2)B.eq\r(3)C.eq\f(\r(3)+1,2)D.eq\f(\r(5)+1,2)13.F1、F2是雙曲線的左、右焦點(diǎn),P是雙曲線上一點(diǎn),且∠F1PF2=60°,S△PF1F2=12eq\r(3),又離心率為2,求雙曲線的方程.1.雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)既關(guān)于坐標(biāo)軸對(duì)稱(chēng),又關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng);其頂點(diǎn)為(±a,0),實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b;其上任一點(diǎn)P(x,y)的橫坐標(biāo)均滿(mǎn)足|x|≥a.2.雙曲線的離心率e=eq\f(c,a)的取值范圍是(1,+∞),其中c2=a2+b2,且eq\f(b,a)=eq\r(e2-1),離心率e越大,雙曲線的開(kāi)口越大.可以通過(guò)a、b、c的關(guān)系,列方程或不等式求離心率的值或范圍.3.雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的漸近線方程為y=±eq\f(b,a)x,也可記為eq\f(x2,a2)-eq\f(y2,b2)=0;與雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1具有相同漸近線的雙曲線的方程可表示為eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0).3.2雙曲線的簡(jiǎn)單性質(zhì)知識(shí)梳理1.標(biāo)準(zhǔn)方程eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)范圍x≥a或x≤-ay≥a或y≤-a對(duì)稱(chēng)性關(guān)于x、y軸對(duì)稱(chēng)關(guān)于原點(diǎn)對(duì)稱(chēng)頂點(diǎn)(a,0),(-a,0)(0,a),(0,-a)漸近線y=±eq\f(b,a)xy=±eq\f(a,b)x離心率e=eq\f(c,a)>1e=eq\f(c,a)>12.(1)中心(2)實(shí)軸虛軸(3)開(kāi)闊增大作業(yè)設(shè)計(jì)1.B[∵e=eq\f(\r(6),2),∴e2=eq\f(c2,a2)=eq\f(3,2),∴eq\f(b2,a2)=eq\f(1,2),故選B.]2.A3.C[由于橢圓4x2+y2=1的焦點(diǎn)坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(0,±\f(\r(3),2))),則雙曲線的焦點(diǎn)坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(0,±\f(\r(3),2))),又由漸近線方程為y=eq\r(2)x,得eq\f(a,b)=eq\r(2),即a2=2b2,又由eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),2)))2=a2+b2,得a2=eq\f(1,2),b2=eq\f(1,4),又由于焦點(diǎn)在y軸上,因此雙曲線的方程為2y2-4x2=1.]4.C[由題意知,2b=2,2c=2eq\r(3),則b=1,c=eq\r(3),a=eq\r(2);雙曲線的漸近線方程為y=±eq\f(\r(2),2)x.]5.C[點(diǎn)(eq\r(2),0)即為雙曲線的右頂點(diǎn),過(guò)該點(diǎn)有兩條與雙曲線漸近線平行的直線與雙曲線僅有一個(gè)公共點(diǎn),另過(guò)該點(diǎn)且與x軸垂直的直線也與雙曲線只有一個(gè)公共點(diǎn).]6.B[||PF1|-|PF2||=2a,即3|PF2|=2a,所以|PF2|=eq\f(2a,3)≥c-a,即2a≥3c-3a,即5a≥3c,則eq\f(c,a)≤eq\f(5,3).]7.eq\f(\r(13),3)解析a+b=5,ab=6,解得a,b的值為2或3.又a>b,∴a=3,b=2.∴c=eq\r(13),從而e=eq\f(c,a)=eq\f(\r(13),3).8.eq\f(x2,9)-eq\f(y2,16)=1(x>3)解析以BC所在直線為x軸,BC的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,則B(-5,0),C(5,0),而|AB|-|AC|=6<10.故A點(diǎn)的軌跡是雙曲線的右支,其方程為eq\f(x2,9)-eq\f(y2,16)=1(x>3).9.eq\f(x2,\f(9,4))-eq\f(y2,4)=1解析∵所求雙曲線與雙曲線eq\f(x2,9)-eq\f(y2,16)=1有相同的漸近線,∴可設(shè)所求雙曲線的方程為eq\f(x2,9)-eq\f(y2,16)=λ(λ≠0).∵點(diǎn)(-3,2eq\r(3))在雙曲線上,∴λ=eq\f(-32,9)-eq\f(2\r(3)2,16)=eq\f(1,4).∴所求雙曲線的方程為eq\f(x2,\f(9,4))-eq\f(y2,4)=1.10.解(1)因直線x=eq\f(15,4)與漸近線4x+3y=0的交點(diǎn)坐標(biāo)為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(15,4),-5)),而3<|-5|,故雙曲線的焦點(diǎn)在x軸上,設(shè)其方程為eq\f(x2,a2)-eq\f(y2,b2)=1,由eq\b\lc\{\rc\(\a\vs4\al\co1(\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(15,4)))2,a2)-\f(32,b2)=1,,\f(b2,a2)=\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3)))2,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a2=9,,b2=16.))故所求的雙曲線方程為eq\f(x2,9)-eq\f(y2,16)=1.(2)設(shè)F1、F2為雙曲線的兩個(gè)焦點(diǎn).依題意,它的焦點(diǎn)在x軸上.因?yàn)镻F1⊥PF2,且|OP|=6,所以2c=|F1F2又P與兩頂點(diǎn)連線夾角為eq\f(π,3),所以a=|OP|·taneq\f(π,6)=2eq\r(3),所以b2=c2-a2=24.故所求的雙曲線方程為eq\f(x2,12)-eq\f(y2,24)=1.11.(1)解∵e=eq\r(2),∴可設(shè)雙曲線方程為x2-y2=λ.∵過(guò)點(diǎn)(4,-eq\r(10)),∴16-10=λ,即λ=6.∴雙曲線方程為x2-y2=6.(2)證明易知F1(-2eq\r(3),0)、F2(2eq\r(3),0),∴kMF1=eq\f(m,3+2\r(3)),kMF2=eq\f(m,3-2\r(3)),kMF1·kMF2=eq\f(m2,9-12)=-eq\f(m2,3),∵點(diǎn)(3,m)在雙曲線上,∴9-m2=6,m2=3,故kMF1·kMF2=-1,∴MF1⊥MF2.(3)解△F1MF2的底|F1F2|=4eq\r(3),F(xiàn)1F2上的高h(yuǎn)=|m|=eq\r(3),∴S△F1MF2=6.12.D[設(shè)雙曲線方程為eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0),如圖所示,雙曲線的一條漸近線方程為y=eq\f(b,a)x,而kBF=-eq\f(b,c),∴eq\f(b,a)·(-eq\f(b,c))=-1,整理得b2=ac.∴c2-a2-ac=0,兩邊同除以a2,得e2-e-1=0,解得e=eq\f(1+\r(5),2)或e=eq\f(1-\r(5),2)(舍去),故選D.]13.解設(shè)雙曲線方程為eq\f(x2,a2)-eq\f(y2,b2)=1.∵|F1F2|=2c,而e=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度精密產(chǎn)品模具設(shè)計(jì)與委托加工服務(wù)合同4篇
- 2025年休閑公園場(chǎng)地租賃合同印花稅繳納規(guī)范2篇
- 專(zhuān)業(yè)發(fā)藝師2024服務(wù)協(xié)議樣本版A版
- 2025年度智慧農(nóng)業(yè)園區(qū)場(chǎng)商位租賃與農(nóng)產(chǎn)品上行合同4篇
- 專(zhuān)用消防系統(tǒng)增補(bǔ)協(xié)議樣本2024版A版
- 2025年度多功能鏟車(chē)租賃服務(wù)合同范本4篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)合作開(kāi)發(fā)合同7篇
- 2025年度可打印PAD與智能教室系統(tǒng)配套合同3篇
- 2024蔬菜種植合作社與社區(qū)團(tuán)購(gòu)平臺(tái)合作協(xié)議范本3篇
- 2025年度拆伙協(xié)議書(shū)范本下載4篇
- 2024年職工普法教育宣講培訓(xùn)課件
- 金蛇納瑞企業(yè)2025年會(huì)慶典
- 安保服務(wù)評(píng)分標(biāo)準(zhǔn)
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語(yǔ)一年級(jí)上冊(cè)Unit 1 教學(xué)課件(新教材)
- 全國(guó)職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項(xiàng))考試題庫(kù)(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲(chǔ)電站儲(chǔ)能系統(tǒng)調(diào)試方案
- 2024年二級(jí)建造師繼續(xù)教育題庫(kù)及答案(500題)
- 小學(xué)數(shù)學(xué)二年級(jí)100以?xún)?nèi)連加連減口算題
- 建設(shè)單位如何做好項(xiàng)目管理
評(píng)論
0/150
提交評(píng)論