內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)江市重點中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某口罩生產(chǎn)商為了檢驗產(chǎn)品質(zhì)量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3252.一物體做直線運動,其位移(單位:)與時間(單位:)的關(guān)系是,則該物體在時的瞬時速度是A. B.C. D.3.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點,若C為直線與y軸的交點,且,則k等于()A.4 B.6C. D.4.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.15.命題“存在,使得”的否定為()A.存在, B.對任意,C對任意, D.對任意,6.直線的斜率為()A.135° B.45°C.1 D.-17.經(jīng)過兩點直線的傾斜角是()A. B.C. D.8.已知,那么函數(shù)在x=π處的瞬時變化率為()A. B.0C. D.9.若復(fù)數(shù)滿足,則復(fù)數(shù)對應(yīng)的點的軌跡圍成圖形的面積等于()A. B.C. D.10.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件11.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.12.已知是空間的一個基底,若,,若,則()A. B.C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則正整數(shù)___________.14.如圖,橢圓的中心在坐標(biāo)原點,是橢圓的左焦點,分別是橢圓的右頂點和上頂點,當(dāng)時,此類橢圓稱為“黃金橢圓”,則“黃金橢圓”的離心率___________.15.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為_________16.設(shè)點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機、軍工、航天等多個領(lǐng)域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調(diào)研與統(tǒng)計,某公司七年時間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖的數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時,國家給予公司補貼5億元,預(yù)測當(dāng)芯片的研發(fā)投入為17億元時公司的實際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),18.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.19.(12分)已知函數(shù).(1)記函數(shù),當(dāng)時,討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個不同的零點,證明:為自然對數(shù)的底數(shù)).20.(12分)已知拋物線的焦點為F,點在C上(1)求p的值及F的坐標(biāo);(2)過F且斜率為的直線l與C交于A,B兩點(A在第一象限),求21.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列是首項為1,公比為2的等比數(shù)列,求數(shù)列的前項和.22.(10分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.2、A【解析】先對求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時的瞬時速度【詳解】對求導(dǎo),得,,因此,該物體在時的瞬時速度為,故選A【點睛】本題考查瞬時速度的概念,考查導(dǎo)數(shù)與瞬時變化率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題3、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點的橫坐標(biāo),再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D4、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.5、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.6、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D7、B【解析】求出直線的斜率后可得傾斜角【詳解】經(jīng)過兩點的直線的斜率為,設(shè)該直線的傾斜角為,則,又,所以.故選:B8、A【解析】利用導(dǎo)數(shù)運算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時變化率為,故選:A9、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對應(yīng)的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D10、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.11、B【解析】利用復(fù)數(shù)的除法化簡復(fù)數(shù),利用復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B12、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)組合數(shù)和排列數(shù)的運算即可求得答案.【詳解】由題意,,得.故答案為:6.14、或【解析】寫出,,求出,根據(jù)以及即可求解,【詳解】由題意,,,所以,,因為,則,即,即,所以,即,解得或(舍).故答案為:15、【解析】建立如圖直角坐標(biāo)系,設(shè)點,根據(jù)題意和兩點坐標(biāo)求距離公式可得,結(jié)合圓的面積公式計算即可.【詳解】以點A為坐標(biāo)原點,射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,如圖,設(shè)點,則,由,化簡并整理得:,于是得點M軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故答案為:16、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關(guān)于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計算即可(2)代入回歸直線計算即可【小問1詳解】由折線圖中數(shù)據(jù)知,,,因為,所以所以y關(guān)于x的線性回歸方程為【小問2詳解】當(dāng)時,億元,此時公司的實際收益的預(yù)測值為億元18、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)數(shù)列公比為,因為為的等差中項,可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問2詳解】解:由(1)知且,可得,所以.19、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對導(dǎo)數(shù)化簡整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個不同的零點,將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因為,所以,令,得或.所以時,或;時,.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因為,所以.當(dāng)時,,可得在上單調(diào)遞減,此時不可能存在兩個不同的零點,不符合題意.當(dāng)時,.令,得.當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,在上單調(diào)遞減.而當(dāng)時,,時,.所以要使存在兩個不同的零點,則,即,解得.因為存在兩個不同的零點,則,即.不妨設(shè),則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點點睛】解決本題的第(1)問的關(guān)鍵是對導(dǎo)函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運用,四是換元思想的運用.20、(1),(2)4【解析】(1)將M坐標(biāo)代入方程即可;(2)聯(lián)立直線l與拋物線方程得到A、B的橫坐標(biāo),再利用焦半徑公式求出即可.【小問1詳解】將代入,得,解得,所以【小問2詳解】由(1)得拋物線方程為,直線l的方程為,聯(lián)立消y得,解得或,因為A在第一象限,所以,所以,,所以21、(1)(2)【解析】(1)根據(jù)等差數(shù)列條件列方程,即可求通項公式;(2)先由等比數(shù)列通項公式求出,解得,分組求和即可.【小問1詳解】設(shè)等差數(shù)列的公差為,則,∴,由,∴,∴數(shù)列的通項公式為.【小問2詳解】∵數(shù)列是首項為1,公比為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論