2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題含解析_第1頁
2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題含解析_第2頁
2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題含解析_第3頁
2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題含解析_第4頁
2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省遂寧市高中數(shù)學高二上期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或2.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.3.若圓與直線相切,則()A.3 B.或3C. D.或4.若直線與雙曲線相交,則的取值范圍是A. B.C. D.5.已知關于的不等式的解集是,則的值是()A B.5C. D.76.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.7.已知向量,,則()A. B.C. D.8.在長方體中,,,則與平面所成的角的正弦值為()A. B.C. D.9.袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):由此可以估計,恰好第三次就停止的概率為()A. B.C. D.10.已知,為橢圓上關于短軸對稱的兩點,、分別為橢圓的上、下頂點,設,、分別為直線,的斜率,則的最小值為()A. B.C. D.11.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限12.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程為_______.14.已知圓,則圓心坐標為______.15.若在數(shù)列的每相鄰兩項之間插入此兩項的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構造出新的數(shù)列,現(xiàn)將數(shù)列進行構造,第次得到數(shù)列;第次得到數(shù)列;依次構造,第次得到數(shù)列;記,則(1)___________,(2)___________16.已知數(shù)列滿足:,且,記,若,則___________.(用表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓的標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:18.(12分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)直方圖估算:(1)在該地隨機調(diào)查一位在崗居民,該居民收入在區(qū)間內(nèi)的概率;(2)該地區(qū)在崗居民月收入的平均數(shù)和中位數(shù);19.(12分)設是首項為的等差數(shù)列的前項和,是首項為1的等比數(shù)列的前項和,為數(shù)列的前項和,為數(shù)列的前項和,已知.(1)若,求;(2)若,求.20.(12分)如圖,中,且,將沿中位線EF折起,使得,連結AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.21.(12分)已知拋物線的焦點,點在拋物線上.(1)求;(2)過點向軸作垂線,垂足為,過點的直線與拋物線交于兩點,證明:為直角三角形(為坐標原點).22.(10分)求下列函數(shù)的導數(shù).(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒2、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點:直線與圓相交的弦長問題3、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標準方程為:,則圓心為,半徑為,因為圓與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B4、C【解析】聯(lián)立直線和雙曲線的方程得到,即得的取值范圍.【詳解】聯(lián)立直線和雙曲線的方程得當,即時,直線和雙曲線的漸近線重合,所以直線與雙曲線沒有公共點.當,即時,,解之得.故選:C.【點睛】本題主要考查直線和雙曲線的位置關系,意在考查學生對這些知識的掌握水平和分析推理能力.5、D【解析】由題意可得的根為,然后利用根與系數(shù)的關系列方程組可求得結果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D6、C【解析】畫出直觀圖,利用椎體體積公式進行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C7、D【解析】按空間向量的坐標運算法則運算即可.【詳解】.故選:D.8、D【解析】過點作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長度關系求得即可.【詳解】在平面內(nèi)過點作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.9、A【解析】利用古典概型的概率公式求解.【詳解】因為隨機模擬產(chǎn)生了以下18組隨機數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個,所以由此可以估計,恰好第三次就停止的概率為,故選:A10、A【解析】設出點,的坐標,并表示出兩個斜率、,把代數(shù)式轉化成與點的坐標相關的代數(shù)式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A11、A【解析】將直線化為,結合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設,直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.12、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的標準方程為x2=y,得拋物線是焦點在y軸正半軸的拋物線,2p=1,∴其準線方程是y=,故答案為14、【解析】將圓的一般方程配方程標準方程即可.【詳解】圓,即,它的圓心坐標是.故答案為:.15、①.②.【解析】根據(jù)題意得到,再利用疊加法求解即可.【詳解】由題知:,,,所以,,,……,,所以,,……,,即,所以.故答案為:;16、【解析】由可得,結合已知條件,利用裂項相消求和法即可得答案.【詳解】解:因為,所以,即,所以,因為,所以,又,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】(1)由可求出,結合離心率可知,進而可求出,即可求出標準方程.(2)由題意知,,則由直線的點斜式方程可得直線的解析式為,與橢圓進行聯(lián)立,設,,結合韋達定理可得,從而由斜率的計算公式對進行整理化簡從而可證明.【詳解】(1)解:因為,所以.又因為離心率,所以,則,所以橢圓的標準方程是(2)證明:由題意知,,,則直線的解析式為,代入橢圓方程,得設,,則.又因為,,所以【點睛】關鍵點睛:本題第二問的關鍵是聯(lián)立直線和橢圓的方程后,結合韋達定理,用表示交點橫坐標的和與積,從而代入進行整理化簡.18、(1)(2)平均數(shù)為;中位數(shù)為.【解析】(1)直接根據(jù)概率和為1計算得到答案.(2)根據(jù)平均數(shù)和中位數(shù)的定義直接計算得到答案.【小問1詳解】該居民收入在區(qū)間內(nèi)的概率為:【小問2詳解】居民月收入的平均數(shù)為:.第一組概率為,第二組概率為,第三組概率為,設居民月收入的中位數(shù)為,則,解得.19、(1)或(2)【解析】(1)列方程組解得等差數(shù)列的公差,即可求得其前項和;(2)列方程組解得等差數(shù)列的公差和等比數(shù)列的公比,以錯位相減法即可求得數(shù)列的前項和.【小問1詳解】設的公差為,的公比為,則,,因為即,解之得或,又因為,得所以或,故,或【小問2詳解】因為,所以,所以由解得(舍去)或,于是得,所以,因為,(1)所以,(2)所以由(1)(2)得:故20、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設,則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.21、(1)(2)證明見解析【解析】(1)點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論