2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省上蔡一高高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域是A. B.C. D.2.一個三棱錐的正視圖和俯視圖如圖所示,則該三棱錐的側視圖可能為A. B.C. D.3.已知,,且滿足,則的最小值為()A.2 B.3C. D.4.已知,,,則下列判斷正確的是()A. B.C. D.5.若,則的大小關系為()A. B.C. D.6.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β其中正確的命題是()A.①② B.②③C.③④ D.④7.已知,設函數(shù),的最大值為A,最小值為B,那么A+B的值為()A.4042 B.2021C.2020 D.20248.函數(shù)的大致圖像是()A. B.C. D.9.已知函數(shù)的值域為R,則a的取值范圍是()A. B.C. D.10.,,的大小關系是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓關于直線的對稱圓的標準方程為___________.12.已知一個銅質的實心圓錐的底面半徑為6,高為3,現(xiàn)將它熔化后鑄成一個銅球(不計損耗),則該銅球的半徑是__________13.函數(shù)的定義域是______________14.已知函數(shù),若,則___________;若存在,滿足,則的取值范圍是___________.15.奇函數(shù)的定義域為,若在上單調遞減,且,則實數(shù)的取值范圍是________________.16.已知函數(shù),若方程有4個不同的實數(shù)根,則的取值范圍是____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,且(1)求的值;(2)求的值18.已知函數(shù),將函數(shù)的圖象向左平移個單位,再向上平移2個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)求函數(shù)在上的最大值和最小值.19.已知,(1)若,求a的值;(2)若函數(shù)在內有且只有一個零點,求實數(shù)a的取值范圍20.已知函數(shù).(1)當時,解不等式;(2)設,若,,都有,求實數(shù)a的取值范圍.21.已知角的終邊經(jīng)過點,求的值;已知,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由,求得的取值集合得答案詳解】解:由,得,函數(shù)定義域是故選:D【點睛】本題考查函數(shù)的定義域及其求法,關鍵是明確正切函數(shù)的定義域,屬于基礎題2、D【解析】由幾何體的正視圖和俯視圖可知,三棱錐的頂點在底面內的射影在底面棱上,則原幾何體如圖所示,從而側視圖為D.故選D3、C【解析】由題意得,根據(jù)基本不等式“1”的代換,計算即可得答案.【詳解】因為,所以,所以,當且僅當時,即,時取等號所以的最小值為.故選:C4、C【解析】對數(shù)函數(shù)的單調性可比較、與的大小關系,由此可得出結論.【詳解】,即.故選:C.5、D【解析】根據(jù)對數(shù)的運算性質以及指數(shù)函數(shù)和對數(shù)函數(shù)的單調性即可判斷【詳解】因為,而函數(shù)在定義域上遞增,,所以故選:D6、D【解析】利用平面與平面垂直和平行的判定和性質,直線與平面平行的判斷,對選項逐一判斷即可【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題故選D【點睛】本題考查平面與平面的位置關系,直線與平面的位置關系,考查空間想象力,屬于中檔題.7、D【解析】由已知得,令,則,由的單調性可求出最大值和最小值的和為,即可求解.【詳解】函數(shù)令,∴,又∵在,時單調遞減函數(shù);∴最大值和最小值的和為,函數(shù)的最大值為,最小值為;則;故選:8、D【解析】由題可得定義域為,排除A,C;又由在上單增,所以選D.9、D【解析】首先求出時函數(shù)的值域,設時,的值域為,依題意可得,即可得到不等式組,解得即可;【詳解】解:由題意可得當時,所以的值域為,設時,的值域為,則由的值域為R可得,∴,解得,即故選:D10、D【解析】作出弧度角的正弦線、余弦線和正切線,利用三角函數(shù)線來得出、、的大小關系.【詳解】作出弧度角的正弦線、余弦線和正切線如下圖所示,則,,,其中虛線表示的是角的終邊,,則,即.故選:D.【點睛】本題考查同角三角函數(shù)值的大小比較,一般利用三角函數(shù)線來比較,考查數(shù)形結合思想的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】兩圓關于直線對稱,則兩圓的圓心關于直線對稱,且兩圓半徑相同,由此求解即可【詳解】由題,圓的標準方程為,即圓心,半徑為,設對稱圓的圓心為,則,解得,所以對稱圓的方程為,故答案為:【點睛】本題考查圓關于直線對稱的圓,屬于基礎題12、3【解析】設銅球的半徑為,則,得,故答案為.13、【解析】由題意可得,從而可得答案.【詳解】函數(shù)的定義域滿足即,所以函數(shù)的定義域為故答案為:14、①.②.【解析】若,則,然后分、兩種情況求出的值即可;畫出的圖象,若存在,滿足,則,其中,然后可得,然后可求出答案.【詳解】因為,所以若,則,當時,,解得,滿足當時,,解得,不滿足所以若,則的圖象如下:若存在,滿足,則,其中所以因為,所以,,所以故答案為:;15、【解析】因為奇函數(shù)的定義域為,若在上單調遞減,所以在定義域上遞減,且,所以解得,故填.點睛:利用奇函數(shù)及其增減性解不等式時,一方面要確定函數(shù)的增減性,注意奇函數(shù)在對稱區(qū)間上單調性一致,同時還要注意函數(shù)的定義域對問題的限制,以免遺漏造成錯誤.16、【解析】先畫出函數(shù)的圖象,把方程有4個不同的實數(shù)根轉化為函數(shù)的圖象與有四個不同的交點,結合對數(shù)函數(shù)和二次函數(shù)的性質,即可求解.【詳解】由題意,函數(shù),要先畫出函數(shù)的圖象,如圖所示,又由方程有4個不同的實數(shù)根,即函數(shù)的圖象與有四個不同的交點,可得,且,則=,因為,則,所以.故答案為.【點睛】本題主要考查了函數(shù)與方程的綜合應用,其中解答中把方程有4個不同的實數(shù)根,轉化為兩個函數(shù)的有四個交點,結合對數(shù)函數(shù)與二次函數(shù)的圖象與性質求解是解答的關鍵,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)將條件化為,然后,可得答案;(2)由第一問可得,然后,解出即可.【詳解】(1)因為,且,所以故又因為,所以,即,所以所以(2)由(1)知,又因為,所以.因為,,所以,即,解得或因為,所以,所以18、(1)(2)見解析【解析】(1)首先化簡三角函數(shù)式,然后確定平移變換之后的函數(shù)解析式即可;(2)結合(1)中函數(shù)解析式確定函數(shù)的最大值即可.【詳解】(1).由題意得,化簡得.(2)∵,可得,∴.當時,函數(shù)有最大值1;當時,函數(shù)有最小值.【點睛】本題主要考查三角函數(shù)圖像的變換,三角函數(shù)最值的求解等知識,意在考查學生的轉化能力和計算求解能力.19、(1)(2)【解析】(1)由即可列方程求出a的值;(2)化簡f(x)解析式,利用進行換元,將問題轉化為在內有且只有一個零點,在上無零點進行討論.【小問1詳解】由得,即,,解得,∵,∴;【小問2詳解】,令,則當時,,,,在內有且只有一個零點等價于在內有且只有一個零點,在上無零點.∵a>1,在內為增函數(shù).①若在內有且只有一個零點,內無零點,故只需,解得;②若為的零點,內無零點,則,得,經(jīng)檢驗,符合題意綜上,實數(shù)a的取值范圍是20、(1),(2)【解析】(1)由同角關系原不等式可化為,化簡可得,結合正弦函數(shù)可求其解集,(2)由條件可得在上的最大值小于或等于在上的最小值,利用單調性求的最大值,利用換元法,通過分類討論求的最小值,由此列不等式求實數(shù)a的取值范圍.【小問1詳解】由得,,當時,,由,而,故解得,所以的解集為,.【小問2詳解】由題意可知在上的最大值小于或等于在上的最小值.因為在上單調遞減,所以在上的值域為.則恒成立,令,于是在恒成立.當即時,在上單調遞增,則只需,即,此時恒成立,所以;當即時,在上單調遞減,則只需,即,不滿足,舍去;當即時,只需,解得,而,所以.綜上所述,實數(shù)a的取值范圍為.21、(1);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論