2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江西省新余第四中學、上高第二中學高二數(shù)學第一學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°2.均勻壓縮是物理學一種常見現(xiàn)象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設(shè)曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.3.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.4.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x5.已知數(shù)列{}滿足,則()A. B.C. D.6.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是A. B.C. D.7.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.8.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.49.某高中從3名男教師和2名女教師中選出3名教師,派到3個不同的鄉(xiāng)村支教,要求這3名教師中男女都有,則不同的選派方案共有()種A.9 B.36C.54 D.10810.在數(shù)列中,已知,則“”是“是單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.圓心在x軸負半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.12.若是函數(shù)的一個極值點,則的極大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則________14.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為__________15.某幾何體的三視圖如圖所示,則該幾何體的體積為______.16.點在以,為焦點的橢圓上運動,則的重心的軌跡方程是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.18.(12分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標原點),證明:直線與軸的交點為定點.19.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.20.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結(jié)果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內(nèi)的概率21.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值22.(10分)已知圓:與x軸負半軸交于點A,過A的直線交拋物線于B,C兩點,且.(1)證明:點C的橫坐標為定值;(2)若點C在圓內(nèi),且過點C與垂直的直線與圓交于D,E兩點,求四邊形ADBE的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D2、C【解析】設(shè)單位圓上一點為,經(jīng)過題設(shè)變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點坐標為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.3、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.4、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.5、B【解析】先將通項公式化簡然后用裂項相消法求解即可.【詳解】因為,.故選:B6、D【解析】,∵函數(shù)在區(qū)間單調(diào)遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調(diào)遞減,∴.∴取值范圍是.故選D考點:利用導數(shù)研究函數(shù)的單調(diào)性.7、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.8、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B9、C【解析】根據(jù)給定條件利用排列并結(jié)合排除法列式計算作答.【詳解】從含有3名男教師和2名女教師的5名教師中任選3名教師,派到3個不同的鄉(xiāng)村支教,不同的選派方案有種,選出3名教師全是男教師的不同的選派方案有種,所以3名教師中男女都有的不同的選派方案共有種故選:C10、C【解析】分別求出當、“是單調(diào)遞增數(shù)列”時實數(shù)的取值范圍,利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】已知,若,即,解得.若數(shù)列是單調(diào)遞增數(shù)列,對任意的,,即,所以,對任意的恒成立,故,因此,“”是“是單調(diào)遞增數(shù)列”充要條件.故選:C.11、A【解析】根據(jù)題意,設(shè)圓心為坐標為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設(shè)圓心為坐標為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標為,故所求圓的方程為,故選:A12、D【解析】先對函數(shù)求導,由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調(diào)性,從而確定極大值點,然后帶入原函數(shù)即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當,,單調(diào)遞增;時,,單調(diào)遞減;當,,單調(diào)遞增,所以的極大值為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】將代入計算,利用和互為相反數(shù),作差可得,計算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時成立.故答案為:.14、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.15、【解析】根據(jù)三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:16、【解析】設(shè)出點和三角形的重心,利用重心坐標公式得到點和三角形的重心坐標的關(guān)系,,代入橢圓方程即可求得軌跡方程,再利用,,三點不共線得到.【詳解】設(shè),,由,得,即,,因為為的重心,所以,,即,,代入,得,即,因為,,三點不共線,所以,則的重心的軌跡方程是.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)動點的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點可得,由此可得,根據(jù)橢圓的定義可得點的軌跡為橢圓,結(jié)合橢圓的標準方程求動點的軌跡的方程;(2)由(1)可求點坐標,設(shè)直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點且長軸為4的橢圓上則動點的軌跡的方程為:;【小問2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故18、(1);(2)證明見解析.【解析】(1)利用拋物線點,n)到焦點的距離等于到x軸的距離求出,從而得到拋物線的標準方程(2)聯(lián)立直線與拋物線方程,通過韋達定理求出直線方程,然后由,即可求解【小問1詳解】由題意可得,故拋物線方程為;【小問2詳解】設(shè),,,,直線的方程為,聯(lián)立方程中,消去得,,則,又,解得或(舍去),直線方程為,直線過定點19、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質(zhì)得出n的最小值.【小問1詳解】設(shè)等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.20、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分數(shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設(shè)為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點睛】關(guān)鍵點點睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關(guān)系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.21、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點O,連結(jié),,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設(shè)O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.22、(1)證明見解析(2)【解析】(1)設(shè)直線方程,與拋物線方程聯(lián)立,設(shè),,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論