2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市昌平臨川育人學(xué)校高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,則等于()A. B.C. D.2.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.3.一動(dòng)圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線4.?dāng)?shù)列,,,,,中,有序?qū)崝?shù)對(duì)是()A. B.C. D.5.已知雙曲線(,)的左、右焦點(diǎn)分別為,,.若雙曲線M的右支上存在點(diǎn)P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.6.等差數(shù)列中,,則()A. B.C. D.7.圓與圓的位置關(guān)系是()A.外離 B.外切C.相交 D.內(nèi)切8.設(shè)等差數(shù)列的前n項(xiàng)和為,且,則()A.64 B.72C.80 D.1449.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.10.已知甲、乙、丙三名同學(xué)同時(shí)獨(dú)立地解答一道導(dǎo)數(shù)試題,每人均有的概率解答正確,且三個(gè)人解答正確與否相互獨(dú)立,在三人中至少有兩人解答正確的條件下,甲解答不正確的概率A. B.C. D.11.設(shè),是兩個(gè)不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}二、填空題:本題共4小題,每小題5分,共20分。13.與直線平行,且距離為的直線方程為_(kāi)_____14.在中,內(nèi)角,,的對(duì)邊分別為,,,若,且,則_______15.狄利克雷是十九世紀(jì)德國(guó)杰出的數(shù)學(xué)家,對(duì)數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.16.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,底面ABCD是邊長(zhǎng)為2的菱形,,,且,E為PD的中點(diǎn)(1)求證:;(2)求二面角的大??;(3)在側(cè)棱PC上是否存在點(diǎn)F,使得點(diǎn)F到平面AEC的距離為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由18.(12分)已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在的最大值.19.(12分)如圖,已知正方體的棱長(zhǎng)為2,,,分別為,,的中點(diǎn)(1)求直線與直線所成角余弦值;(2)求點(diǎn)到平面的距離20.(12分)已知函數(shù)在與處都取得極值.(1)求a,b的值;(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)c的取值范圍.21.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別在上,且(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.22.(10分)已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和,且(其中為原點(diǎn)),求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題得,進(jìn)而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A2、D【解析】構(gòu)造函數(shù),用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯(cuò)誤;,即,則錯(cuò)誤;,即,則錯(cuò)誤;,即,則正確;故選:.3、C【解析】設(shè)動(dòng)圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡(jiǎn),再根據(jù)圓錐曲線的定義,可得到動(dòng)圓圓心軌跡.【詳解】設(shè)動(dòng)圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動(dòng)圓圓心軌跡為雙曲線的一支.故選:C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.4、A【解析】根據(jù)數(shù)列的概念,找到其中的規(guī)律即可求解.【詳解】由數(shù)列,,,,,可知,,,,,則,解得,故有序?qū)崝?shù)對(duì)是,故選:5、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點(diǎn)P的位置列出不等式求解即得.【詳解】依題意,點(diǎn)P不與雙曲線頂點(diǎn)重合,在中,由正弦定理得:,因,于是得,而點(diǎn)P在雙曲線M的右支上,即,從而有,點(diǎn)P在雙曲線M的右支上運(yùn)動(dòng),并且異于頂點(diǎn),于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A6、C【解析】由等差數(shù)列的前項(xiàng)和公式和性質(zhì)進(jìn)行求解.【詳解】由題意,得.故選:C.7、C【解析】利用圓心距與半徑的關(guān)系確定正確選項(xiàng).【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以?xún)蓤A相交.故選:C8、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項(xiàng)和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.9、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯(cuò)誤;,故錯(cuò)誤正確;當(dāng)時(shí),不等式不成立,錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對(duì)于不等式知識(shí)的綜合應(yīng)用.10、C【解析】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件,利用二項(xiàng)分布的知識(shí)計(jì)算出,再計(jì)算出,結(jié)合條件概率公式求得結(jié)果.【詳解】記“三人中至少有兩人解答正確”為事件;“甲解答不正確”為事件則;本題正確選項(xiàng):【點(diǎn)睛】本題考查條件概率的求解問(wèn)題,涉及到利用二項(xiàng)分布公式求解概率的問(wèn)題.11、B【解析】,得不到,因?yàn)榭赡芟嘟?,只要和的交線平行即可得到;,,∴和沒(méi)有公共點(diǎn),∴,即能得到;∴“”是“”的必要不充分條件.故選B考點(diǎn):必要條件、充分條件與充要條件的判斷.【方法點(diǎn)晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項(xiàng).12、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因?yàn)橹本€與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.14、【解析】代入,展開(kāi)整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因?yàn)?,所以,所以,因?yàn)?,所以,則,整理得,解得.故答案為:.【點(diǎn)睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡(jiǎn)求值,屬于中檔題.15、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:116、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:2三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,用空間向量求解二面角;(3)設(shè)出F點(diǎn)坐標(biāo),用空間向量的點(diǎn)到平面距離公式進(jìn)行求解.【小問(wèn)1詳解】證明:連接BD,設(shè)BD與AC交于點(diǎn)O,連接PO.因?yàn)?,所以四棱錐中,底面ABCD是邊長(zhǎng)為2的菱形,則又,所以平面PBD,因?yàn)槠矫鍼BD,所以【小問(wèn)2詳解】因?yàn)?,所以,所以由?)知平面ABCD,以O(shè)為原點(diǎn),,,的方向?yàn)閤軸,y軸,z軸正方向,建立空間直角坐標(biāo)系,則,,,,,,所以,,,設(shè)平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問(wèn)3詳解】存在點(diǎn)F到平面AEC的距離為,理由如下:由(2)得,,設(shè),則,所以點(diǎn)F到平面AEC的距離,解得,,所以18、(1)(2)【解析】(1)利用兩角和的余弦公式以及輔助角公式可得,再由正弦函數(shù)單調(diào)區(qū)間,整體代入即可求解.(2)根據(jù)三角函數(shù)的單調(diào)性即可求解.【小問(wèn)1詳解】,,解得,所以函數(shù)的單調(diào)遞增區(qū)間為【小問(wèn)2詳解】由(1),解得函數(shù)的單調(diào)遞減區(qū)間為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,所以函數(shù)的最大值為.19、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法由求解;(1)建立空間直角坐標(biāo)系,先取得平面的一個(gè)法向量,,,然后由求解【小問(wèn)1詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系.則,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,則直線與直線所成角的余弦值為;【小問(wèn)2詳解】,2,,,2,,設(shè)平面的一個(gè)法向量,,,則,取,得,1,,又,點(diǎn)到平面的距離20、(1),;(2).【解析】(1)極值點(diǎn)處導(dǎo)數(shù)值為零,據(jù)此即可求出a和b;(2)利用導(dǎo)數(shù)求出f(x)在時(shí)的最大值即可.【小問(wèn)1詳解】由題設(shè),,又,,解得,.【小問(wèn)2詳解】由(1)得,即,當(dāng)時(shí),,隨的變化情況如下表:1+0-0+遞增極大值遞減極小值遞增∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時(shí),為極大值,又,顯然f(-)<f(2)所以為在上的最大值.要使對(duì)任意恒成立,則只需,解得或c>1.∴實(shí)數(shù)c的取值范圍為.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進(jìn)而證明問(wèn)題;(2)先證明平面,平面,進(jìn)而證明點(diǎn)P在兩個(gè)平面的交線上,然后證得結(jié)論.【小問(wèn)1詳解】連接分別是的中點(diǎn),.在中,.所以四點(diǎn)共面.【小問(wèn)2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.22、(1);(2)【解析】(1)求出橢圓的焦點(diǎn)和頂點(diǎn),即得雙曲線的頂點(diǎn)和焦點(diǎn),從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得①設(shè)則又,得,,即,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論