版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省武威市天祝藏族自治縣第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.2.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.3.已知橢圓的離心率為,左、右焦點(diǎn)分別為、,過作軸的平行線交橢圓于、兩點(diǎn),為坐標(biāo)原點(diǎn),雙曲線的虛軸長為,且以、為頂點(diǎn),以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.4.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.若直線經(jīng)過,,兩點(diǎn),則直線的傾斜角的取值范圍是()A. B.C. D.6.下列雙曲線中,焦點(diǎn)在軸上且漸近線方程為的是A. B.C. D.7.已知數(shù)列中,,(),則()A. B.C. D.28.如圖,在四面體中,,,,點(diǎn)為的中點(diǎn),,則()A. B.C. D.9.拋物線C:的焦點(diǎn)為F,P,R為C上位于F右側(cè)的兩點(diǎn),若存在點(diǎn)Q使四邊形PFRQ為正方形,則()A. B.C. D.10.已知橢圓的右焦點(diǎn)為,則正數(shù)的值是()A.3 B.4C.9 D.2111.命題“,”的否定形式是()A., B.,C., D.,12.已知拋物線,過點(diǎn)作拋物線的兩條切線,點(diǎn)為切點(diǎn).若的面積不大于,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),則___________.14.近年來,我國外賣業(yè)發(fā)展迅猛,外賣小哥穿梭在城市的大街小巷成為一道道亮麗的風(fēng)景線.他們根據(jù)外賣平臺(tái)提供的信息到外賣店取單,某外賣小哥每天來往于r個(gè)外賣店(外賣店的編號(hào)分別為1,2,…,r,其中),約定:每天他首先從1號(hào)外賣店取單,稱為第1次取單,之后,他等可能的前往其余個(gè)外賣店中的任何一個(gè)店取單,稱為第2次取單,依此類推.假設(shè)從第2次取單開始,他每次都是從上次取單的店之外的個(gè)外賣店取單.設(shè)事件表示“第k次取單恰好是從1號(hào)店取單()”,是事件發(fā)生的概率,顯然,,則______,與的關(guān)系式為______15.在數(shù)列中,若,則該數(shù)列的通項(xiàng)公式__________16.從甲、乙、丙、丁4位同學(xué)中,選出2位同學(xué)分別擔(dān)任正、副班長的選法數(shù)可以用表示為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的公比,且,是的等差中項(xiàng).數(shù)列的前n項(xiàng)和為,滿足,.(1)求和的通項(xiàng)公式;(2)設(shè),求的前2n項(xiàng)和.18.(12分)已知拋物線過點(diǎn).(1)求拋物線方程;(2)若直線與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),且,求證:過定點(diǎn).19.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.20.(12分)已知橢圓M:的離心率為,左頂點(diǎn)A到左焦點(diǎn)F的距離為1,橢圓M上一點(diǎn)B位于第一象限,點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)對(duì)稱,直線CF與橢圓M的另一交點(diǎn)為D(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)設(shè)直線AD的斜率為,直線AB的斜率為.求證:為定值21.(12分)已知在△中,角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大?。唬?)若,求△的面積S的最大值.22.(10分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點(diǎn),P為線段上的動(dòng)點(diǎn)(1)求證:;(2)當(dāng)點(diǎn)P滿足時(shí),求證:直線平面;(3)是否存在點(diǎn)P,使直線與平面所成角的正弦值為?若存在,試確定P點(diǎn)的位置;若不存在,請(qǐng)說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)AA1=2AB=2,因?yàn)?,所以異面直線A1B與AD1所成角,,故選D.2、B【解析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因?yàn)?,故可得,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.3、C【解析】不妨取點(diǎn)在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點(diǎn)的坐標(biāo),再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點(diǎn)在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:4、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.5、D【解析】應(yīng)用兩點(diǎn)式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D6、C【解析】焦點(diǎn)在軸上的是C和D,漸近線方程為,故選C考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡單幾何性質(zhì)7、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進(jìn)而可求得答案【詳解】因?yàn)椋?),所以,所以數(shù)列的周期為3,,故選:A8、B【解析】利用插點(diǎn)的方法,將歸結(jié)到題目中基向量中去,注意中線向量的運(yùn)用.【詳解】.故選:B.9、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對(duì)稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對(duì)稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A10、A【解析】由直接可得.【詳解】由題知,所以,因?yàn)?,所?故選:A11、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A12、C【解析】由題意,設(shè),直線方程為,則由點(diǎn)到直線的距離公式求出點(diǎn)到直線的距離,再聯(lián)立直線與拋物線方程,由韋達(dá)定理及弦長公式求出,進(jìn)而可得,結(jié)合即可得答案.【詳解】解:因?yàn)閽佄锞€的性質(zhì):在拋物線上任意一點(diǎn)處的切線方程為,設(shè),所以在點(diǎn)處的切線方程為,在點(diǎn)B處的切線方程為,因?yàn)閮蓷l切線都經(jīng)過點(diǎn),所以,,所以直線的方程為,即,點(diǎn)到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達(dá)定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征求出點(diǎn),再利用空間兩點(diǎn)間的距離公式即可求.【詳解】因?yàn)锽與關(guān)于原點(diǎn)對(duì)稱,故,所以.故答案為:.14、①.②.【解析】根據(jù)題意,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】根據(jù)題意,事件表示“第3次取單恰好是從1號(hào)店取單”,因此;同理故答案為:;.15、【解析】由已知可得數(shù)列是以為首項(xiàng),3為公比的等比數(shù)列,結(jié)合等比數(shù)列通項(xiàng)公式即可得解.【詳解】解:由在數(shù)列中,若,則數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列通項(xiàng)公式可得,故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列通項(xiàng)公式的求法,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.16、【解析】由題意知:從4為同學(xué)中選出2位進(jìn)行排列,即可寫出表示方式.【詳解】1、從4位同學(xué)選出2位同學(xué),2、把所選出的2位同學(xué)任意安排為正、副班長,∴選法數(shù)為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),()(2)【解析】(1)等差數(shù)列和等比數(shù)列的基本量的計(jì)算,根據(jù)條件列出方程,并解方程即可;(2)數(shù)列根據(jù)的奇偶分段表示,奇數(shù)項(xiàng)通過乘公比錯(cuò)位相減法克求得前項(xiàng)和,偶數(shù)項(xiàng)則是通過裂項(xiàng)求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當(dāng)時(shí),,當(dāng)時(shí),,經(jīng)檢驗(yàn),時(shí),適合上式,故().綜上可得:,【小問2詳解】由(1)可知,當(dāng)n為奇數(shù)時(shí),,當(dāng)n為偶數(shù)時(shí),,由題意,有①②①-②得:,則有:..故.18、(1);(2)證明見解析.【解析】(1)運(yùn)用代入法直接求解即可;(2)設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合一元二次方程根與系數(shù)關(guān)系、平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設(shè),,∴OA→?因?yàn)橹本€與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),所以,即過定點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.19、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個(gè)平面的法向量,利用兩個(gè)向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系.根據(jù)條件容易求出如下各點(diǎn)坐標(biāo):,,,,,,,.(Ⅰ)證明:∵,,是平面的一個(gè)法向量,且,所以.又∵平面,∴平面;(Ⅱ)設(shè)是平面的法向量,因?yàn)椋?,由,?解得平面的一個(gè)法向量,由已知,平面的一個(gè)法向量為,,∴二面角的余弦值是.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結(jié)合橢圓的性質(zhì)進(jìn)行求解即可;(2)設(shè)出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結(jié)合一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設(shè),,則,CF:聯(lián)立∴,∴【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.21、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進(jìn)而可得C的大??;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號(hào)成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴△的面積S的最大值為.22、(1)見解析(2)見解析(3)存在點(diǎn)P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人房屋買賣合同模板(含貸款條款)4篇
- 2025年度個(gè)人借款三方擔(dān)保合同糾紛解決條款4篇
- 年度腎上腺皮質(zhì)激素類藥產(chǎn)業(yè)分析報(bào)告
- 2025年個(gè)人購房合同(含房屋保險(xiǎn)服務(wù))
- 2025年度高速公路隧道照明安裝與維護(hù)合同模板3篇
- 二零二五年度高品質(zhì)抹灰施工班組勞務(wù)分包協(xié)議3篇
- 2025年度個(gè)人入股合作協(xié)議書范本:航空航天股權(quán)投資協(xié)議3篇
- 2025年度有機(jī)茶園種植與產(chǎn)品銷售合作協(xié)議范本4篇
- 網(wǎng)絡(luò)教育課程設(shè)計(jì)
- 2024版新房購買中介合作協(xié)議
- 光儲(chǔ)電站儲(chǔ)能系統(tǒng)調(diào)試方案
- 2024年二級(jí)建造師繼續(xù)教育題庫及答案(500題)
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學(xué)試卷
- 選煤廠安全知識(shí)培訓(xùn)課件
- 項(xiàng)目前期選址分析報(bào)告
- 急性肺栓塞搶救流程
- 《形象價(jià)值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來人員出入校門登記表
評(píng)論
0/150
提交評(píng)論