2025屆廣東省廣州市數學高二上期末統(tǒng)考試題含解析_第1頁
2025屆廣東省廣州市數學高二上期末統(tǒng)考試題含解析_第2頁
2025屆廣東省廣州市數學高二上期末統(tǒng)考試題含解析_第3頁
2025屆廣東省廣州市數學高二上期末統(tǒng)考試題含解析_第4頁
2025屆廣東省廣州市數學高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省廣州市數學高二上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y(tǒng)軸的距離為()A.8 B.4C. D.92.設是空間一定點,為空間內任一非零向量,滿足條件的點構成的圖形是()A.圓 B.直線C.平面 D.線段3.已知等比數列,且,則()A.16 B.32C.24 D.644.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.5.對于函數,下列說法正確的是()A.的單調減區(qū)間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則6.拋物線的焦點坐標A. B.C. D.7.已知圓,則圓上的點到坐標原點的距離的最小值為()A.-1 B.C.+1 D.68.拋物線有如下光學性質:由其焦點射出的光線經拋物線反射后,沿平行于拋物線對稱軸的方向射出;反之,平行于拋物線對稱軸的入射光線經拋物線反射后必過拋物線的焦點.已知拋物線,O為坐標原點,一條平行于x軸的光線從點射入,經過C上的點A反射后,再經C上另一點B反射后,沿直線射出,經過點N.下列說法正確的是()A.若,則 B.若,則平分C.若,則 D.若,延長AO交直線于點D,則D,B,N三點共線9.宋元時期數學名著《算學啟蒙》中有關于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.210.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.211.已知,則()A. B.C. D.12.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數學研究時,有一個有趣的問題:一個邊長為2的正方形內部挖了一個內切圓,現在以該內切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線的傾斜角的取值范圍是______.14.已知,點在軸上,且,則點的坐標為____________.15.寫出一個同時滿足下列條件①②的圓C的一般方程______①圓心在第一象限;②圓C與圓相交的弦的方程為16.設函數,.若對任何,,恒成立,求的取值范圍______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結論;(2)求平面與平面夾角的余弦值18.(12分)(1)若在是減函數,求實數m的取值范圍;(2)已知函數在R上無極值點,求a的值.19.(12分)已知拋物線的焦點為,點在拋物線上,當以為始邊,為終邊的角時,.(1)求的方程(2)過點的直線交于兩點,以為直徑的圓平行于軸的直線相切于點,線段交于點,求的面積與的面積的比值20.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經過坐標原點,求的值21.(12分)已知圓C:(1)若點,求過點的圓的切線方程;(2)若點為圓的弦的中點,求直線的方程22.(10分)求滿足下列條件的圓錐曲線方程的標準方程.(1)經過點,兩點的橢圓;(2)與雙曲線-=1有相同的漸近線且經過點的雙曲線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y(tǒng)軸的距離為4,故選:B2、C【解析】根據法向量的定義可判斷出點所構成的圖形.【詳解】是空間一定點,為空間內任一非零向量,滿足條件,所以,構成的圖形是經過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎題.3、A【解析】由等比數列的定義先求出公比,然后可解..【詳解】,得故選:A4、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設點的坐標為,有,由圓的圓心坐標為,是拋物線的焦點坐標,有,由圓的幾何性質可得,又由,可得的最小值為故選:C.5、B【解析】函數,,,,,利用導數研究函數的單調性以及極值,畫出圖象A.結合圖象可判斷出正誤;B.設函數的值域為,函數,的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數在單調遞減,可得函數在單調遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數,,,,可得函數在上單調遞減,在上單調遞減,在上單調遞增,當時,,由此作出函數的大致圖象,如圖示:A.由上述分析結合圖象,可得A不正確B.設函數的值域為,函數,的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數在單調遞減,可得函數在單調遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結合圖象可知,因此D不正確故選:B6、B【解析】由拋物線方程知焦點在x軸正半軸,且p=4,所以焦點坐標為,所以選B7、A【解析】先求出圓心和半徑,求出圓心到坐標原點的距離,從而求出圓上的點到坐標原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標原點的距離最小值為.故選:A8、D【解析】根據求出焦點為、點坐標,可得直線的方程與拋物線方程聯(lián)立得點坐標,由兩點間的距離公式求出可判斷AC;時可得,.由可判斷B;求出點坐標可判斷D.【詳解】如圖,若,則,C的焦點為,因為,所以,直線的方程為,整理得,與拋物線方程聯(lián)立得,解得或,所以,所以,選項A錯誤;時,因為,所以.又,,所以不平分,選項B不正確;若,則,C的焦點為,因為,所以,直線的方程為,所以,所以,選項C錯誤;若,則,C的焦點為,因為,所以,直線的方程為,所以,直線的方程為,延長交直線于點D,所以則,所以D,B,N三點共線,選項D正確;故選:D.9、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答10、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數的最小正周期為,,,所以.故選:A11、B【解析】根據基本初等函數的導數公式及求導法則求導函數即可.【詳解】.故選:B.12、B【解析】根據題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出直線的斜率取值范圍,再根據斜率與傾斜角的關系,即可求出【詳解】可化為:,所以,由于,結合函數在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關系的應用,以及直線的一般式化斜截式,屬于基礎題14、【解析】設P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點P的坐標為(0,0,3).15、(答案不唯一)【解析】設所求圓為,由圓心在第一象限可判斷出,只需取特殊值,即可得到答案.【詳解】可設所求圓為,即只需,解得:,不妨取,則圓的方程為:.故答案為:(答案不唯一)16、【解析】先把原不等式轉化為恒成立,構造函數,利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數.,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數的取值范圍:①參變分離,轉化為不含參數的最值問題;②不能參變分離,直接對參數討論,研究的單調性及最值;③特別地,個別情況下恒成立,可轉換為(二者在同一處取得最值).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標系,則,,,因為分別為的中點,所以.所以,.設平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.18、(1);(2)1【解析】(1)將問題轉化為在內恒成立,求出的最小值,即可得到答案;(2)對函數求導得,由,即可得到答案;【詳解】(1)依題意知,在內恒成立,所以在內恒成立,所以,因為的最小值為1,所以,所以實數m的取值范圍是.(2),依題意有,即,,解得.19、(1)(2)【解析】(1)過點作,垂足為,過點作,垂足為,根據拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據,求得,設,得到,進而求得,因為為的中點,求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準線方程,如圖所示,過點作,垂足為,過點作,垂足為,因為時,,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設,因為直線的直線過點,設直線的方程為聯(lián)立方程組,整理得,可得,則,因為為的中點,所以,由拋物線的定義得,設圓與直線相切于點,因為交于點,所以且,所以,即,解得,設,則,且,可得,因為,所以點為的中點,所以,又因為為的中點,可得,所以,即的面積與的面積的比值為.20、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據圓過原點可得,設,從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數的值.【小問1詳解】當時,直線,設,由可得,此時,故.【小問2詳解】設,因為以為直徑的圓經過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結合其范圍可得.21、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據圓心與弦中點的連線垂直線,可求出直線的斜率,進而求出結果.【小問1詳解】解:由題意知圓心的坐標為,半徑,當過點的直線的斜率不存在時,方程為由圓心到直線的距離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論