四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省眉山市仁壽第一中學(xué)校南校區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.2.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件3.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.34.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.5.平行六面體中,若,則()A. B.1C. D.6.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.7.橢圓的左、右焦點分別為,過焦點的傾斜角為直線交橢圓于兩點,弦長,若三角形的內(nèi)切圓的面積為,則橢圓的離心率為()A. B.C. D.8.已知,分別為橢圓的左右焦點,為坐標(biāo)原點,橢圓上存在一點,使得,設(shè)的面積為,若,則該橢圓的離心率為()A. B.C. D.9.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標(biāo)原點的拋物線的方程是()A. B.C.或 D.或10.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件11.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.12.如圖所示幾何體的正視圖和側(cè)視圖都正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).14.已知雙曲線的左、右焦點分別為,,O為坐標(biāo)原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________15.若數(shù)列滿足,,設(shè),類比課本中推導(dǎo)等比數(shù)列前項和公式的方法,可求得______________16.已知拋物線的焦點與的右焦點重合,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的公比,且,的等差中項為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(1)求證:平面;(2)在線段上是否存在一點,使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由19.(12分)已知等差數(shù)列前n項和為,,,若對任意的正整數(shù)n成立,求實數(shù)的取值范圍.20.(12分)如圖,在長方體中,,點E在棱上運動(1)證明:;(2)當(dāng)E為棱的中點時,求直線與平面所成角的正弦值;(3)等于何值時,二面角的大小為?21.(12分)已知橢圓的一個焦點坐標(biāo)為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,點P在橢圓C上,若的面積為,求點P的坐標(biāo)22.(10分)已知函數(shù),(1)求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】取中點,連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計算的正弦值.【詳解】取中點,連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C2、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.3、B【解析】根據(jù)程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B4、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴在R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A5、D【解析】根據(jù)空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.6、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題7、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點三角形及三角形內(nèi)切圓的性質(zhì),也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內(nèi)切圓的面積為,則半徑為1,由等面積可得,.故選:C.8、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.9、C【解析】由分焦點在軸的正半軸上和焦點在軸的負(fù)半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點在軸的正半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點在軸的負(fù)半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.10、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C11、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C12、B【解析】根據(jù)側(cè)視圖,沒有實對角線,正視圖實對角線的方向,排除錯誤選項,得到答案.【詳解】側(cè)視時,看到一個矩形且不能有實對角線,故A,D排除而正視時,有半個平面是沒有的,所以應(yīng)該有一條實對角線,且其對角線位置應(yīng)從左上角畫到右下角,故C排除.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.14、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因為,所以,因為,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.15、n【解析】先對兩邊同乘以4,再相加,化簡整理即可得出結(jié)果.【詳解】由①得:②所以①②得:,所以,,故答案為【點睛】本題主要考查類比推理的思想,結(jié)合錯位相減法思想即可求解,屬于基礎(chǔ)題型.16、【解析】求出拋物線的焦點坐標(biāo)即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標(biāo)為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)將題目的條件寫成的形式并求解,寫出等比等比數(shù)列通項公式;(2)利用錯位相減法求和.小問1詳解】由題意可得,,∴,∵,∴,∴數(shù)列的通項公式為.【小問2詳解】,∴①,②,①-②可得,∴.18、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標(biāo)系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設(shè),求出,結(jié)合已知條件可列出關(guān)于的方程,從而可求出的值.【詳解】證明:過作于點,則,以為原點,,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系則,,,

,,,∵為的中點.∴.則,,,設(shè)平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設(shè),∴.∴,∴

.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,即,∵,∴,故【點睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.19、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時,取得最小值,進而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對稱軸為,所以當(dāng)或4時,取得最小值,所以實數(shù)的取值范圍是.20、(1)證明見解析;(2);(3).【解析】(1)連接、,長方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過作于,連接,可得二面角平面角為,令,由長方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問1詳解】由題設(shè),連接、,又長方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點,則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長方體性質(zhì)知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時,二面角的大小為.21、(1)(2)或或或【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)三角形的面積列方程,化簡求得點的坐標(biāo).【小問1詳解】設(shè)橢圓C的焦距為,由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論