版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省秦皇島市盧龍中學(xué)數(shù)學(xué)高一上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)a>0,b>0,化簡的結(jié)果是()A. B.C. D.-3a2.如圖()四邊形為直角梯形,動點從點出發(fā),由沿邊運動,設(shè)點運動的路程為,面積為.若函數(shù)的圖象如圖(),則的面積為()A. B.C. D.3.函數(shù)的定義域為()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]4.若函數(shù)圖象上所有點的橫坐標(biāo)向右平移個單位,縱坐標(biāo)保持不變,得到的函數(shù)圖象關(guān)于軸對稱,則的最小值為()A. B.C. D.5.若函數(shù)在閉區(qū)間上有最大值5,最小值1,則的取值范圍是()A. B.C. D.6.已知向量,,則A. B.C. D.7.已知命題:角為第二或第三象限角,命題:,命題是命題的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.一個多面體的三視圖如圖所示,則該多面體的表面積為()A.21+ B.18+C.21 D.189.若函數(shù),則()A. B.C. D.10.已知函數(shù)關(guān)于x的方程有4個根,,,,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的最大值為3,最小值為1,則函數(shù)的值域為_________.12.已知集合,若,求實數(shù)的值.13.已知,函數(shù),若,則______,此時的最小值是______.14.已知函數(shù),若對任意的、,,都有成立,則實數(shù)的取值范圍是______.15.意大利畫家達·芬奇提出:固定項鏈的兩端,使其在重力的作用下自然下垂,那么項鏈所形成的曲線是什么?這就是著名的“懸鏈線問題”.雙曲余弦函數(shù),就是一種特殊的懸鏈線函數(shù),其函數(shù)表達式為,相應(yīng)的雙曲正弦函數(shù)的表達式為.設(shè)函數(shù),若實數(shù)m滿足不等式,則m的取值范圍為___________.16.若函數(shù)在[-1,2]上的最大值為4,最小值為m,且函數(shù)在上是增函數(shù),則a=______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)開發(fā)生產(chǎn)了一種大型電子產(chǎn)品,生產(chǎn)這種產(chǎn)品的年固定成本為2500萬元,每生產(chǎn)百件,需另投入成本(單位:萬元),當(dāng)年產(chǎn)量不足30百件時,;當(dāng)年產(chǎn)量不小于30百件時,;若每件電子產(chǎn)品的售價為5萬元,通過市場分析,該企業(yè)生產(chǎn)的電子產(chǎn)品能全部銷售完.(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百件)的函數(shù)關(guān)系式;(2)年產(chǎn)量為多少百件時,該企業(yè)在這一電子產(chǎn)品的生產(chǎn)中獲利最大?18.如圖,在棱長為2的正方體中,E,F(xiàn)分別是棱的中點.(1)證明:平面;(2)求三棱錐的體積.19.某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)數(shù)據(jù)如下表:時間51125種植成本1510.815(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.20.已知直線經(jīng)過點和點.(Ⅰ)求直線的方程;(Ⅱ)若圓的圓心在直線上,并且與軸相切于點,求圓的方程21.設(shè)函數(shù),其中.(1)求函數(shù)的值域;(2)若,討論在區(qū)間上的單調(diào)性;(3)若在區(qū)間上為增函數(shù),求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由分?jǐn)?shù)指數(shù)冪的運算性質(zhì)可得結(jié)果.【詳解】因為,,所以.故選:D.2、B【解析】由題意,當(dāng)在上時,;當(dāng)在上時,圖()在,時圖象發(fā)生變化,由此可知,,根據(jù)勾股定理,可得,所以本題選擇B選項.3、D【解析】根據(jù)函數(shù)式的性質(zhì)可得,即可得定義域;【詳解】根據(jù)的解析式,有:解之得:且;故選:D【點睛】本題考查了具體函數(shù)定義域的求法,屬于簡單題;4、B【解析】由題設(shè)可得,根據(jù)已知對稱性及余弦函數(shù)的性質(zhì)可得,即可求的最小值.【詳解】由題設(shè),關(guān)于軸對稱,∴且,則,,又,∴的最小值為.故選:B.5、D【解析】數(shù)形結(jié)合:根據(jù)所給函數(shù)作出其草圖,借助圖象即可求得答案【詳解】,令,即,解得或,,作出函數(shù)圖象如下圖所示:因為函數(shù)在閉區(qū)間上有最大值5,最小值1,所以由圖象可知,故選:D【點睛】本題考查二次函數(shù)在閉區(qū)間上的最值問題,考查數(shù)形結(jié)合思想,深刻理解“三個二次”間的關(guān)系是解決該類問題的關(guān)鍵6、A【解析】因為,故選A.7、D【解析】利用切化弦判斷充分性,根據(jù)第四象限的角判斷必要性.【詳解】當(dāng)角為第二象限角時,,所以,當(dāng)角為第三象限角時,,所以,所以命題是命題的不充分條件.當(dāng)時,顯然,當(dāng)角可以為第四象限角,命題是命題的不必要條件.所以命題是命題的既不充分也不必要條件.故選:D8、A【解析】由題意,該多面體的直觀圖是一個正方體挖去左下角三棱錐和右上角三棱錐,如下圖,則多面體的表面積.故選A.考點:多面體的三視圖與表面積.9、C【解析】應(yīng)用換元法求函數(shù)解析式即可.【詳解】令,則,所以,即.故選:C10、B【解析】依題意畫出函數(shù)圖象,結(jié)合圖象可知且,,即可得到,則,再令,根據(jù)二次函數(shù)的性質(zhì)求出的取值范圍,最后根據(jù)對勾函數(shù)的性質(zhì)計算可得;【詳解】解:因,所以函數(shù)圖象如下所示:由圖象可知,其中,其中,,,則,得..令,,又在上單調(diào)減,,即.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)三角函數(shù)性質(zhì),列方程求出,得到,進而得到,利用換元法,即可求出的值域【詳解】根據(jù)三角函數(shù)性質(zhì),的最大值為,最小值為,解得,則函數(shù),則函數(shù),,令,則,令,由得,,所以,的值域為故答案為:【點睛】關(guān)鍵點睛:解題關(guān)鍵在于求出后,利用換元法得出,,進而求出的范圍,即可求出所求函數(shù)的值域,難度屬于中檔題12、【解析】根據(jù)題意,可得或,然后根據(jù)結(jié)果進行驗證即可.【詳解】由題可知:集合,所以或,則或當(dāng)時,,不符合集合元素的互異性,當(dāng)時,,符合題意所以【點睛】本題考查元素與集合的關(guān)系求參數(shù),考查計算能力,屬基礎(chǔ)題.13、①.②.【解析】直接將代入解析式即可求的值,進而可得的解析式,再分段求最小值即可求解.【詳解】因為,所以,所以,當(dāng)時,對稱軸為,開口向上,此時在單調(diào)遞增,,當(dāng)時,,此時時,最小值,所以最小值為,故答案為:;.14、【解析】分析出函數(shù)為上的減函數(shù),結(jié)合已知條件可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】設(shè),則,由可得,即,所以,函數(shù)為上的減函數(shù).由于,由題意可知,函數(shù)在上為減函數(shù),則,函數(shù)在上為減函數(shù),則,且有,所以,解得.因此,實數(shù)的取值范圍是.故答案:.【點睛】關(guān)鍵點點睛:在利用分段函數(shù)的單調(diào)性求參數(shù)時,除了分析每支函數(shù)的單調(diào)性外,還應(yīng)由間斷點處函數(shù)值的大小關(guān)系得出關(guān)于參數(shù)的不等式組求解.15、【解析】先判斷為奇函數(shù),且在R上為增函數(shù),然后將轉(zhuǎn)化為,從而有,進而可求出m的取值范圍【詳解】由題意可知,的定義域為R,因為,所以為奇函數(shù).因為,且在R上為減函數(shù),所以由復(fù)合函數(shù)的單調(diào)性可知在R上為增函數(shù).又,所以,所以,解得.故答案為:.16、【解析】當(dāng)時,有,此時,此時為減函數(shù),不合題意.若,則,故,檢驗知符合題意三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)100百件【解析】(1)根據(jù)收益總收入成本,進行分情況討論,構(gòu)建出分段函數(shù);(2)對分段函數(shù)每一段進行研究最大值,然后再求出整個函數(shù)的最大值.【詳解】解:(1)當(dāng)時,;當(dāng)時,;;(2)當(dāng)時,,當(dāng)時,;當(dāng)時,,當(dāng)且僅當(dāng),即時,.年產(chǎn)量為100百件時,該企業(yè)獲得利潤最大,最大利潤為1800萬元.【點睛】本題考查了數(shù)學(xué)建模問題、分段函數(shù)最值問題,數(shù)學(xué)建模要能準(zhǔn)確地從題意中抽象出函數(shù)模型,分段函數(shù)是一個函數(shù),分段不分家,一般需要分情況討論。18、(1)證明見解析(2)【解析】(1)連接,設(shè),連接EF,EO,利用中位線和正方體的性質(zhì)證明四邊形是平行四邊形,進而可證平面;(2)由平面可得點F,到平面的距離相等,則,進而求得三棱錐的體積即可【詳解】(1)證明:連接,設(shè),連接EF,EO,因為E,F分別是棱的中點,所以,,因為正方體,所以,,所以,,所以四邊形是平行四邊形,所以,又平面,平面,所以平面(2)由(1)可得點F,到平面的距離相等,所以,又三棱錐的高為棱長,即,,所以.所以【點睛】本題考查線面平行的證明,考查三棱錐的體積,考查轉(zhuǎn)化思想19、(1);(2)該蔬菜上市150天時,該蔬菜種植成本最低為10(元/).【解析】(1)先作出散點圖,根據(jù)散點圖的分布即可判斷只有模型符合,然后將數(shù)據(jù)代入建立方程組,求出參數(shù).(2)由于模型為二次函數(shù),結(jié)合定義域,利用配方法即可求出最低種植成本以及對應(yīng)得上市時間.【詳解】解:(1)以上市時間(單位:10天)為橫坐標(biāo),以種植成本(單位/)為縱坐標(biāo),畫出散點圖(如圖).根據(jù)點的分布特征,,,這三個函數(shù)模型與表格所提供的數(shù)據(jù)不吻合,只有函數(shù)模型與表格所提供的數(shù)據(jù)吻合最好,所以選取函數(shù)模型進行描述該蔬菜種植成本與上市時間的變化關(guān)系.將表格所提供的三組數(shù)據(jù)分別代入,得解得所以,描述該蔬菜種植成本與上市時間的變化關(guān)系的函數(shù)為.(2)由(1)知,所以當(dāng)時,的最小值為10,即該蔬菜上市150天時,該蔬菜種植成本最低為10(元/).【點睛】判斷模型的步驟:(1)作出散點圖;(2)根據(jù)散點圖點的分布,以及各個模型的圖像特征作出判斷;二次函數(shù)型最值問題常用方法:配方法,但要注意定義域.20、(Ⅰ)x﹣y﹣1=0;(Ⅱ)(x+2)2+(y﹣3)2=4【解析】(Ⅰ)由兩點式,可得直線l的方程;(Ⅱ)利用圓C的圓心在直線l上,且與y軸相切于點,確定圓心坐標(biāo)與半徑,即可求圓C的方程試題解析:(Ⅰ)由已知,直線的斜率,所以,直線的方程為.(Ⅱ)因為圓的圓心在直線上,可設(shè)圓心坐標(biāo)為,因為圓與軸相切于點,所以圓心在直線上.所以.所以圓心坐標(biāo)為,半徑為4.所以,圓的方程為.考點:直線、圓的方程21、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市建設(shè)土石方工程施工管理方案
- 《心臟解剖及生理》課件
- 《HRBP課程分享》課件
- 四年級數(shù)學(xué)幾百幾十?dāng)?shù)乘以一位數(shù)單元作業(yè)試題大全附答案
- 二年級數(shù)學(xué)兩位數(shù)加兩位數(shù)計算題能力測試試題帶答案
- 2025年中考數(shù)學(xué)幾何模型歸納訓(xùn)練(全國)專題36 最值模型之逆等線模型解讀與提分精練(解析版)
- 玩具購銷合同條款分析
- 2024年度江西省國家保安員資格考試練習(xí)題及答案
- 《口語考試注意事項》課件
- 中醫(yī)《溫病學(xué)》知識考試題(附答案)
- 遼寧省大連市2023-2024學(xué)年高三上學(xué)期雙基測試(期末考試) 物理 含解析
- 勞務(wù)分包的工程施工組織設(shè)計方案
- 18項醫(yī)療質(zhì)量安全核心制度
- 智能終端安全檢測
- 新能源發(fā)電技術(shù) 電子課件 1.4 新能源發(fā)電技術(shù)
- DB34-T 4859-2024 農(nóng)村河道清淤規(guī)范
- 中學(xué)物業(yè)管理服務(wù)采購?fù)稑?biāo)方案(技術(shù)方案)
- 康復(fù)科年度工作亮點與展望計劃
- 冀教版二年級(上)數(shù)學(xué)加減乘除口算題卡
- 【期中考后反思】《反躬自省,砥礪奮進》-2022-2023學(xué)年初中主題班會課件
- 材料采購服務(wù)方案(技術(shù)方案)
評論
0/150
提交評論