福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)與人工智能》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、大數(shù)據(jù)的應(yīng)用場(chǎng)景不斷擴(kuò)展,包括智慧城市的建設(shè)。假設(shè)要通過(guò)分析城市的各種數(shù)據(jù),如交通、能源、環(huán)境等,來(lái)提高城市的運(yùn)行效率和居民生活質(zhì)量。以下哪種數(shù)據(jù)融合和分析方法最適合智慧城市的需求?()A.多源數(shù)據(jù)融合和時(shí)空分析B.數(shù)據(jù)挖掘和關(guān)聯(lián)規(guī)則分析C.情感分析和文本挖掘D.以上方法結(jié)合使用2、在大數(shù)據(jù)的數(shù)據(jù)預(yù)處理中,數(shù)據(jù)標(biāo)準(zhǔn)化是常見(jiàn)的操作。假設(shè)我們有一個(gè)包含不同量級(jí)特征的數(shù)據(jù)集,需要進(jìn)行標(biāo)準(zhǔn)化處理。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的目的,哪一項(xiàng)是不正確的?()A.使不同特征具有相同的量級(jí),便于模型訓(xùn)練B.消除特征之間的量綱差異,提高模型的準(zhǔn)確性C.增加數(shù)據(jù)的方差,突出數(shù)據(jù)的差異D.使得不同特征對(duì)模型的影響具有可比性3、在處理大規(guī)模數(shù)據(jù)的關(guān)聯(lián)分析時(shí),Apriori算法是一種經(jīng)典的算法。以下關(guān)于Apriori算法的描述,錯(cuò)誤的是?()A.它通過(guò)逐層搜索的方式發(fā)現(xiàn)頻繁項(xiàng)集B.它需要多次掃描數(shù)據(jù)集,計(jì)算效率較低C.它只能發(fā)現(xiàn)布爾型的關(guān)聯(lián)規(guī)則D.它可以自動(dòng)確定關(guān)聯(lián)規(guī)則的置信度閾值4、大數(shù)據(jù)分析方法包括描述性分析、預(yù)測(cè)性分析、規(guī)范性分析等,以下關(guān)于大數(shù)據(jù)分析方法的描述中,錯(cuò)誤的是()。A.描述性分析用于描述數(shù)據(jù)的特征和分布B.預(yù)測(cè)性分析用于預(yù)測(cè)未來(lái)的趨勢(shì)和事件C.規(guī)范性分析用于制定最優(yōu)的決策和行動(dòng)方案D.大數(shù)據(jù)分析方法只適用于大規(guī)模數(shù)據(jù)的分析,不適用于小規(guī)模數(shù)據(jù)的分析5、在大數(shù)據(jù)處理框架中,Spark支持多種數(shù)據(jù)源的讀取和寫(xiě)入。假設(shè)有一個(gè)需求是從關(guān)系型數(shù)據(jù)庫(kù)中讀取數(shù)據(jù),并在Spark中進(jìn)行處理。以下哪種方式是可行的?()A.使用JDBC連接數(shù)據(jù)庫(kù)讀取數(shù)據(jù)B.將數(shù)據(jù)庫(kù)中的數(shù)據(jù)導(dǎo)出為CSV文件,再由Spark讀取C.使用ODBC連接數(shù)據(jù)庫(kù)讀取數(shù)據(jù)D.Alloftheabove(以上皆是)6、大數(shù)據(jù)分析平臺(tái)有很多種,以下關(guān)于大數(shù)據(jù)分析平臺(tái)的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)分析平臺(tái)可以提供數(shù)據(jù)存儲(chǔ)、處理、分析等功能B.大數(shù)據(jù)分析平臺(tái)可以支持多種數(shù)據(jù)分析算法和工具C.大數(shù)據(jù)分析平臺(tái)只適用于大規(guī)模企業(yè),不適用于中小企業(yè)D.大數(shù)據(jù)分析平臺(tái)需要具備高可用性和可擴(kuò)展性7、在大數(shù)據(jù)存儲(chǔ)中,當(dāng)需要支持復(fù)雜的事務(wù)處理時(shí),以下哪種數(shù)據(jù)庫(kù)更適合?()A.關(guān)系型數(shù)據(jù)庫(kù)B.NoSQL數(shù)據(jù)庫(kù)C.圖數(shù)據(jù)庫(kù)D.文檔數(shù)據(jù)庫(kù)8、在大數(shù)據(jù)的隱私保護(hù)方面,數(shù)據(jù)匿名化是一種常用的技術(shù)。假設(shè)我們有一個(gè)包含個(gè)人敏感信息的數(shù)據(jù)集,需要在發(fā)布數(shù)據(jù)前進(jìn)行匿名化處理。以下關(guān)于數(shù)據(jù)匿名化的說(shuō)法,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)匿名化可以完全消除數(shù)據(jù)泄露的風(fēng)險(xiǎn)B.匿名化后的數(shù)據(jù)仍然可能通過(guò)鏈接攻擊等方式被重新識(shí)別C.在進(jìn)行匿名化處理時(shí),需要平衡數(shù)據(jù)的可用性和隱私保護(hù)程度D.不同的匿名化方法對(duì)數(shù)據(jù)的保護(hù)程度和可用性影響不同9、對(duì)于一個(gè)需要處理大規(guī)模實(shí)時(shí)流數(shù)據(jù)的金融大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠滿足高并發(fā)和低延遲的要求?()A.FlinkB.StormC.SparkStreamingD.以上都是10、在大數(shù)據(jù)處理框架中,F(xiàn)link是一個(gè)新興的流處理框架。以下關(guān)于Flink的描述,錯(cuò)誤的是()A.Flink支持高吞吐、低延遲的流處理B.Flink可以同時(shí)處理批處理和流處理任務(wù)C.Flink的容錯(cuò)機(jī)制能夠保證在故障情況下數(shù)據(jù)不丟失D.Flink只能運(yùn)行在Hadoop集群上,無(wú)法獨(dú)立部署11、大數(shù)據(jù)的特點(diǎn)通常包括Volume(大量)、Velocity(高速)、Variety(多樣)和Value(價(jià)值)。當(dāng)處理來(lái)自不同來(lái)源、格式各異的數(shù)據(jù)時(shí),為了實(shí)現(xiàn)有效的數(shù)據(jù)分析,首先需要解決的問(wèn)題是什么?()A.選擇合適的數(shù)據(jù)分析算法B.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化和整合C.確定數(shù)據(jù)的存儲(chǔ)方式D.評(píng)估數(shù)據(jù)的價(jià)值和重要性12、在大數(shù)據(jù)的聚類評(píng)估中,有多種指標(biāo)可以用來(lái)衡量聚類結(jié)果的質(zhì)量。假設(shè)我們對(duì)一個(gè)數(shù)據(jù)集進(jìn)行了聚類,以下哪個(gè)指標(biāo)不適合評(píng)估聚類的緊湊性?()A.輪廓系數(shù)B.Calinski-Harabasz指數(shù)C.Davies-Bouldin指數(shù)D.準(zhǔn)確率13、在大數(shù)據(jù)存儲(chǔ)中,為了支持海量小文件的存儲(chǔ)和訪問(wèn),以下哪種文件系統(tǒng)通常被使用?()A.HDFSB.GFSC.CephD.以上都不是14、在大數(shù)據(jù)應(yīng)用中,推薦系統(tǒng)是常見(jiàn)的一種應(yīng)用。假設(shè)一個(gè)在線視頻平臺(tái)需要為用戶推薦個(gè)性化的視頻內(nèi)容。以下哪種技術(shù)或方法通常用于構(gòu)建推薦系統(tǒng)?()A.協(xié)同過(guò)濾B.分類算法C.回歸分析D.決策樹(shù)15、在大數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟包括數(shù)據(jù)清洗、數(shù)據(jù)集成、數(shù)據(jù)變換和數(shù)據(jù)規(guī)約。以下關(guān)于數(shù)據(jù)預(yù)處理步驟的描述,錯(cuò)誤的是()A.數(shù)據(jù)清洗主要處理缺失值、異常值和重復(fù)值B.數(shù)據(jù)集成是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并到一起C.數(shù)據(jù)變換是對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化、規(guī)范化等操作D.數(shù)據(jù)規(guī)約的目的是增加數(shù)據(jù)量,提高分析的復(fù)雜性16、在大數(shù)據(jù)分析中,常常需要對(duì)海量文本數(shù)據(jù)進(jìn)行分類。假設(shè)有一個(gè)包含大量新聞文章的數(shù)據(jù)集,需要將其分為不同的類別,如政治、經(jīng)濟(jì)、體育等。以下哪種機(jī)器學(xué)習(xí)算法在文本分類任務(wù)中表現(xiàn)較好?()A.樸素貝葉斯B.邏輯回歸C.決策樹(shù)D.隨機(jī)森林17、在構(gòu)建大數(shù)據(jù)系統(tǒng)時(shí),需要考慮數(shù)據(jù)的一致性和可靠性。假設(shè)一個(gè)電商平臺(tái)的大數(shù)據(jù)系統(tǒng),在處理訂單數(shù)據(jù)時(shí),需要確保數(shù)據(jù)在多個(gè)節(jié)點(diǎn)之間的一致性和可靠性,以避免數(shù)據(jù)丟失或錯(cuò)誤。以下哪種技術(shù)或方法最能有效地實(shí)現(xiàn)這一目標(biāo)?()A.數(shù)據(jù)復(fù)制和備份B.分布式事務(wù)處理C.數(shù)據(jù)壓縮和加密D.數(shù)據(jù)緩存和預(yù)取18、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行異常檢測(cè),并且數(shù)據(jù)具有多種特征,以下哪種方法可能更適用?()A.基于距離的異常檢測(cè)B.基于密度的異常檢測(cè)C.基于聚類的異常檢測(cè)D.以上都是19、大數(shù)據(jù)在醫(yī)療健康領(lǐng)域的應(yīng)用面臨一些挑戰(zhàn),以下哪一項(xiàng)不是其面臨的挑戰(zhàn)?()A.數(shù)據(jù)隱私保護(hù)B.數(shù)據(jù)質(zhì)量問(wèn)題C.技術(shù)人才短缺D.醫(yī)療數(shù)據(jù)量不足20、某電商平臺(tái)擁有龐大的用戶行為數(shù)據(jù),包括瀏覽記錄、購(gòu)買(mǎi)記錄、評(píng)價(jià)記錄等。為了更好地了解用戶的興趣和行為模式,從而進(jìn)行精準(zhǔn)的商品推薦,需要對(duì)這些數(shù)據(jù)進(jìn)行深入的分析。在這個(gè)過(guò)程中,以下哪項(xiàng)技術(shù)不是必需的?()A.數(shù)據(jù)清洗和預(yù)處理B.關(guān)聯(lián)規(guī)則挖掘C.分布式文件系統(tǒng)D.傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)管理系統(tǒng)21、在電商領(lǐng)域,大數(shù)據(jù)發(fā)揮著重要作用。以下關(guān)于大數(shù)據(jù)在電商中應(yīng)用的說(shuō)法,錯(cuò)誤的是()A.可以根據(jù)用戶的瀏覽和購(gòu)買(mǎi)歷史進(jìn)行個(gè)性化推薦B.能夠分析市場(chǎng)趨勢(shì),幫助商家制定營(yíng)銷策略C.可以實(shí)時(shí)監(jiān)控庫(kù)存,實(shí)現(xiàn)精準(zhǔn)的庫(kù)存管理D.大數(shù)據(jù)在電商中的應(yīng)用主要集中在商品銷售環(huán)節(jié),對(duì)供應(yīng)鏈管理幫助不大22、在大數(shù)據(jù)項(xiàng)目管理中,以下關(guān)于確定項(xiàng)目需求的描述,哪一項(xiàng)不太準(zhǔn)確?()A.需要與業(yè)務(wù)部門(mén)充分溝通,了解其實(shí)際需求和期望B.只關(guān)注當(dāng)前的業(yè)務(wù)需求,不需要考慮未來(lái)的發(fā)展C.對(duì)需求進(jìn)行詳細(xì)的分析和文檔化,確保各方理解一致D.評(píng)估需求的可行性和優(yōu)先級(jí)23、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)遷移是一個(gè)常見(jiàn)的任務(wù)。假設(shè)要將大量數(shù)據(jù)從一個(gè)舊的存儲(chǔ)系統(tǒng)遷移到新的存儲(chǔ)系統(tǒng),以下哪種策略可能不太可行?()A.一次性全部遷移B.分批次逐步遷移C.先遷移近期使用的數(shù)據(jù),再遷移歷史數(shù)據(jù)D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行遷移24、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的讀取性能,常常采用緩存機(jī)制。假設(shè)一個(gè)數(shù)據(jù)存儲(chǔ)系統(tǒng)中有一個(gè)熱點(diǎn)數(shù)據(jù)區(qū)域,經(jīng)常被訪問(wèn)。以下哪種緩存替換策略在這種情況下可能效果較好?()A.LRU(LeastRecentlyUsed)B.FIFO(FirstInFirstOut)C.LFU(LeastFrequentlyUsed)D.Random(隨機(jī))25、在大數(shù)據(jù)處理中,常常需要對(duì)海量數(shù)據(jù)進(jìn)行快速的排序和檢索。假設(shè)有一個(gè)包含數(shù)億條用戶交易記錄的數(shù)據(jù)集,每條記錄包含交易時(shí)間、交易金額、交易地點(diǎn)等信息?,F(xiàn)在需要快速找出在特定時(shí)間段內(nèi)交易金額最高的前100筆交易。以下哪種技術(shù)或算法最適合解決這個(gè)問(wèn)題?()A.冒泡排序算法B.快速排序算法C.基于Hadoop生態(tài)系統(tǒng)的MapReduce編程模型D.二叉搜索樹(shù)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋大數(shù)據(jù)如何挖掘社交媒體中的商業(yè)價(jià)值。2、(本題5分)說(shuō)明大數(shù)據(jù)法律法規(guī)的重要性。3、(本題5分)簡(jiǎn)述數(shù)據(jù)清洗的目的和常見(jiàn)步驟。4、(本題5分)說(shuō)明大數(shù)據(jù)在保險(xiǎn)定價(jià)中的作用。三、綜合分析題(本大題共5個(gè)小題,共25分)1、(本題5分)綜合研究大數(shù)據(jù)在畜牧行業(yè)的應(yīng)用,如牲畜養(yǎng)殖管理、疫病防控,以及畜牧產(chǎn)品的市場(chǎng)分析。2、(本題5分)分析大數(shù)據(jù)在公務(wù)員培訓(xùn)行業(yè)的應(yīng)用,如考試題型分析、學(xué)員能力評(píng)估,以及培訓(xùn)課程的優(yōu)化設(shè)計(jì)。3、(本題5分)分析某電商平臺(tái)的商品物流跟蹤數(shù)據(jù),提升物流服務(wù)體驗(yàn)。4、(本題5分)探討大數(shù)據(jù)技術(shù)在旅游行業(yè)的應(yīng)用,如游客行為分析、旅游資源管理,以及如何提升旅游體驗(yàn)。5、(本題5分)分析大數(shù)據(jù)在電信行業(yè)的應(yīng)用,如客戶流失預(yù)測(cè)、網(wǎng)絡(luò)優(yōu)化,以及數(shù)據(jù)的海量增長(zhǎng)帶來(lái)的存儲(chǔ)和處理壓力。四、編程題(本大題共3個(gè)小題,共30分)1、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論