2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第1頁
2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第2頁
2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第3頁
2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第4頁
2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省泗縣雙語中學(xué)數(shù)學(xué)高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.變量,之間的一組相關(guān)數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.2.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.3.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是()A. B.C. D.4.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.5.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.6.拋物線的準(zhǔn)線方程是()A. B.C. D.7.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.8.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.9.設(shè)等比數(shù)列的前項和為,若,則的值是()A. B.C. D.410.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或211.已知雙曲線的左、右焦點分別為,,P為雙曲線C上一點,,直線與y軸交于點Q,若,則雙曲線C的漸近線方程為()A. B.C. D.12.設(shè)為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準(zhǔn)線上的投影分別為,兩點,則__________.14.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.15.點到直線的距離為_______.16.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項公式;(2)設(shè)的第k項是數(shù)列的最小項,即恒成立.求證:的第k項是數(shù)列的最小項;(3)設(shè).若存在最大值M與最小值m,且,試求實數(shù)的取值范圍18.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值19.(12分)已知公差大于零的等差數(shù)列的前項和為,且滿足,,(1)求數(shù)列的通項公式;(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);20.(12分)已知橢圓點(1)若橢圓的左焦點為,上頂點為,求點到直線的距離;(2)若點是橢圓的弦的中點,求直線的方程21.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.22.(10分)已知公差不為零的等差數(shù)列的前項和為,,且,,成等比數(shù)列(1)求的通項公式;(2)記,求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.2、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B3、A【解析】由函數(shù)在上單調(diào)遞增,可得,從而可求出實數(shù)的取值范圍【詳解】由,得,因為函數(shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立,即恒成立,因為,所以,所以,所以實數(shù)的取值范圍為,故選:A4、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設(shè),因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.5、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D6、D【解析】將拋物線的方程化為標(biāo)準(zhǔn)方程,可得出該拋物線的準(zhǔn)線方程.【詳解】拋物線的標(biāo)準(zhǔn)方程為,則,可得,因此,該拋物線的準(zhǔn)線方程為.故選:D.7、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.8、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.9、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.10、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B11、B【解析】由題意可設(shè)且,即得a、b的數(shù)量關(guān)系,進(jìn)而求雙曲線C的漸近線方程.【詳解】由題設(shè),,,又,P為雙曲線C上一點,∴,又,為的中點,∴,即,∴雙曲線C的漸近線方程為.故選:B.12、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進(jìn)而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知則焦點坐標(biāo)為,∴過焦點且斜率為的直線方程為,化簡可得,設(shè),則,由可得,所以則故答案為:14、【解析】根據(jù)題意可得,利用推出,進(jìn)而得出結(jié)果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:15、【解析】應(yīng)用點線距離公式求點線距離.【詳解】由題設(shè),點到距離為.故答案為:16、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;若,則;若,則或,解得或或;則的解集為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析.(3)【解析】(1)由已知關(guān)系得出是等差數(shù)列及公差,然后可得通項公式;(2)由已知關(guān)系式,利用累加法證明對任意的,恒成立,即可得(3)由累加法求得通項公式,然后確定的奇數(shù)項和偶數(shù)項的單調(diào)性,得出數(shù)列的最大項和最小項,再利用已知范圍解得的范圍【小問1詳解】由已知,是等差數(shù)列,公差為6,所以;【小問2詳解】對任意的,恒成立,而恒成立,若,則,恒成立,同理若,也有恒成立,所以對任意的,恒成立,即是最小項;【小問3詳解】時,,所以,也適合此式所以,若,則,,,即,,若,由于,且是正負(fù)相間,因此無最大項也無最小項因此有,所以的奇數(shù)項數(shù)列是遞增數(shù)列,且,,的偶數(shù)項數(shù)列是遞減數(shù)列,且,,所以的最大值是,最小項是,,由,又,所以18、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標(biāo)原點,,,所在直線為,,軸,建立空間直角坐標(biāo)系,則,,,,,因為,,所以,即;【小問2詳解】設(shè)平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為19、(1)(2)【解析】(1)利用等差數(shù)列的性質(zhì)可得,聯(lián)立方程可得,代入等差數(shù)列的通項公式可求;(2)代入等差數(shù)列的前和公式可求,進(jìn)一步可得,然后結(jié)合等差數(shù)列的定義可得,從而可求.【詳解】(1)為等差數(shù)列,,又是方程的兩個根,(2)由(1)可知,為等差數(shù)列,舍去)當(dāng)時,為等差數(shù)列,滿足要求【點睛】本題主要考查了等差數(shù)列的定義、性質(zhì)、通項公式、前項和公式的綜合運用,屬于中檔題.20、(1)(2)【解析】(1)根據(jù)橢圓基本關(guān)系求得,,再利用截距式求得方程,進(jìn)而求得點到直線的距離.(2)設(shè),利用點差法求解即可.【詳解】(1)橢圓的左焦點是,上頂點,方程為,即,點到直線的距離;(2)設(shè),,,,又,,兩式相減得:,,即直線的斜率為,直線的方程為:,即【點睛】本題主要考查了橢圓中的基本量運算以及點差法的運用,屬于基礎(chǔ)題.21、(1);(2).【解析】(1),,寫出的展開式通項,由可得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論