版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆黑龍江省哈爾濱第九中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋擲兩枚硬幣,若記出現(xiàn)“兩個(gè)正面”“兩個(gè)反面”“一正一反”的概率分別為,,,則下列判斷中錯(cuò)誤的是().A. B.C. D.2.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.3.均勻壓縮是物理學(xué)一種常見(jiàn)現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來(lái)描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來(lái)的一半,則點(diǎn)的對(duì)應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來(lái)的一半,則曲線上點(diǎn)的對(duì)應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來(lái)的一半,再縱向均勻壓縮至原來(lái)的,得到的曲線方程為()A. B.C. D.4.的展開(kāi)式中的系數(shù)為,則()A. B.C. D.5.已知集合,則()A. B.C. D.6.在四面體中,設(shè),若F為BC的中點(diǎn),P為EF的中點(diǎn),則=()A. B.C. D.7.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.8.某種疾病的患病率為0.5%,通過(guò)驗(yàn)血診斷該病的誤診率為2%,即非患者中有2%的人驗(yàn)血結(jié)果為陽(yáng)性,患者中有2%的人驗(yàn)血結(jié)果為陰性,隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽(yáng)性的概率為()A.0.0689 B.0.049C.0.0248 D.0.029.設(shè)橢圓()的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F且斜率為的直線與C的一個(gè)交點(diǎn)為Q(點(diǎn)Q在x軸上方),且,則C的離心率為()A. B.C. D.10.當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.若是等差數(shù)列的前項(xiàng)和,,則()A.13 B.39C.45 D.2112.過(guò)點(diǎn)且垂直于直線的直線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,點(diǎn)Р在底面ABC內(nèi)的射影為Q,若,則點(diǎn)Q定是的______心14.直線過(guò)拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.15.在遞增等比數(shù)列中,其前項(xiàng)和,若,,則_________.16.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知:,有,:方程表示經(jīng)過(guò)第二、三象限的拋物線,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在直角梯形中,.直角梯形通過(guò)直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點(diǎn),P為線段上的動(dòng)點(diǎn)(1)求證:;(2)當(dāng)點(diǎn)P滿足時(shí),求證:直線平面;(3)是否存在點(diǎn)P,使直線與平面所成角的正弦值為?若存在,試確定P點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由19.(12分)設(shè)函數(shù).(1)求在處的切線方程;(2)求的極小值點(diǎn)和極大值點(diǎn).20.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)等差數(shù)列前n項(xiàng)和為,且(1)求通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和22.(10分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】把拋擲兩枚硬幣的情況均列舉出來(lái),利用古典概型的計(jì)算公式,把,,算出來(lái),判斷四個(gè)選項(xiàng)的正誤.【詳解】?jī)擅队矌?,記為與,則拋擲兩枚硬幣,一共會(huì)出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯(cuò)誤,BCD正確故選:A2、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,則焦距為,故選:B.3、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過(guò)題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過(guò)橫向均勻壓縮至原來(lái)的一半,縱向均勻壓縮至原來(lái)的,得到對(duì)應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.4、B【解析】根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng),先求得x的指數(shù)為1時(shí)r的值,再求得a的值.【詳解】由題意得:二項(xiàng)式展開(kāi)式的通項(xiàng)為:,令,則,故選:B5、B【解析】先求得集合A,再根據(jù)集合的交集運(yùn)算可得選項(xiàng).【詳解】解:因?yàn)?,所以故選:B.6、A【解析】作出圖示,根據(jù)空間向量的加法運(yùn)算法則,即可得答案.【詳解】如圖示:連接OF,因?yàn)镻為EF中點(diǎn),,F(xiàn)為BC的中點(diǎn),則,故選:A7、A【解析】利用對(duì)立事件概率公式可求得所求事件的概率.【詳解】由對(duì)立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.8、C【解析】根據(jù)全概率公式即可求出【詳解】隨機(jī)抽取一人進(jìn)行驗(yàn)血,則其驗(yàn)血結(jié)果為陽(yáng)性的概率為0.0248故選:C9、D【解析】連接Q和右焦點(diǎn),可知|OQ|=,可得∠FQ=90°,由得,寫(xiě)出兩直線方程,聯(lián)立可得Q點(diǎn)坐標(biāo),Q點(diǎn)坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點(diǎn)為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過(guò)F(-c,0),Q過(guò)(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D10、A【解析】設(shè),對(duì)實(shí)數(shù)的取值進(jìn)行分類討論,求得,解不等式,綜合可得出實(shí)數(shù)的取值范圍.【詳解】設(shè),其中.①當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則,解得,此時(shí)不存在;②當(dāng)時(shí),,解得;③當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則,解得,此時(shí)不存在.綜上所述,實(shí)數(shù)的取值范圍是.故選:A.11、B【解析】先根據(jù)等差數(shù)列的通項(xiàng)公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.12、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點(diǎn)代入求解.【詳解】因?yàn)樗笾本€垂直于直線,所以設(shè)其方程為,又因?yàn)橹本€過(guò)點(diǎn),所以,解得所以直線方程為:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點(diǎn)在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.14、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過(guò)拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.15、【解析】根據(jù)等比數(shù)列下標(biāo)和性質(zhì)得到,從而解出、,即可求出公比,從而求出,,即可得解;【詳解】解:因?yàn)?,所以,因?yàn)?,所以、為方程的兩根,所以或,因?yàn)闉檫f增的等比數(shù)列,所以,所以所以或(舍去),所以,,所以故答案為:16、【解析】根據(jù)投影向量概念求解即可.【詳解】因?yàn)榭臻g向量,,所以,,所以向量在向量上投影向量為:,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)將問(wèn)題轉(zhuǎn)化為不等式對(duì)應(yīng)的方程無(wú)解,進(jìn)而根據(jù)根的判別式小于0,計(jì)算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對(duì)應(yīng)的不等式組,解之即可.【小問(wèn)1詳解】由條件知,恒成立,只需的.解得.【小問(wèn)2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實(shí)數(shù)的取值范圍是.18、(1)見(jiàn)解析(2)見(jiàn)解析(3)存在點(diǎn)P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問(wèn)1詳解】由已知可得,,,兩兩垂直,以A為原點(diǎn),,,所在直線為軸,軸,軸建立如圖空間直角坐標(biāo)系,因?yàn)?,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小?wèn)2詳解】設(shè)點(diǎn)坐標(biāo)為,則,∵,∴,,,解得:,,,即設(shè)平面的一個(gè)法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問(wèn)3詳解】設(shè),則,設(shè)的一個(gè)法向量為∵,,∴,解,令,則,,得設(shè)與平面所成角為,則.解得:或(舍).故存在點(diǎn)P,,即點(diǎn)P為距的第一個(gè)5等分點(diǎn)19、(1);(2)極大值點(diǎn),極小值點(diǎn).【解析】(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的導(dǎo)數(shù)求出切線的斜率,結(jié)合切點(diǎn)坐標(biāo),然后求解切線方程;(2)利用導(dǎo)數(shù)研究f(x)的單調(diào)性,判斷函數(shù)的極值點(diǎn)即可【小問(wèn)1詳解】函數(shù),函數(shù)的導(dǎo)數(shù)為,,在處的切線方程:,即【小問(wèn)2詳解】令,,解得,當(dāng)時(shí),可得,即的單調(diào)遞減區(qū)間,或,可得,∴函數(shù)單調(diào)遞增區(qū)間,,的極大值點(diǎn),極小值點(diǎn)20、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,又∵,∴,∴數(shù)列是首項(xiàng)為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;【小問(wèn)2詳解】由(1)知,則,∴,∴.21、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式.(2)求得,利用裂項(xiàng)相消法即可求得.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式;【小問(wèn)2詳解】由(1)得:,所以,所以.22、(1)證明見(jiàn)解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 異黃樟素生物合成機(jī)制-洞察分析
- 元宇宙的區(qū)塊鏈技術(shù)應(yīng)用-洞察分析
- 《熔體破裂現(xiàn)象》課件
- 性激素與子宮內(nèi)膜異位癥-洞察分析
- 疫情期間的健康防護(hù)-洞察分析
- 辦公環(huán)境下的食品安全培訓(xùn)課程設(shè)計(jì)
- 玩具設(shè)計(jì)師職責(zé)描述
- 內(nèi)容創(chuàng)新推動(dòng)下的教育現(xiàn)代化進(jìn)程
- 健康教育課程的設(shè)計(jì)與實(shí)踐應(yīng)用研究
- 2025購(gòu)銷合同解除協(xié)議書(shū)
- 工業(yè)循環(huán)水處理行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 2025公司集團(tuán)蛇年新春年會(huì)游園(靈蛇舞動(dòng)共創(chuàng)輝煌主題)活動(dòng)策劃方案-31P
- 2024年高考?xì)v史必修部分重點(diǎn)必考知識(shí)點(diǎn)總結(jié)(經(jīng)典版)
- 《計(jì)算機(jī)視覺(jué)》教學(xué)課件-第08章1-神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)1
- 職業(yè)衛(wèi)生技術(shù)服務(wù)機(jī)構(gòu)檢測(cè)人員考試真題題庫(kù)
- 人教版2024年小學(xué)二年級(jí)上學(xué)期語(yǔ)文期末考試往年真題
- 安全月度例會(huì)匯報(bào)材料模板
- 大國(guó)兵器學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年無(wú)子女離婚協(xié)議書(shū)范文百度網(wǎng)盤(pán)
- UNIT 4 Section Ⅳ Lesson 3 My Favourite Comedian 學(xué)案 高中英語(yǔ)北師大版 (選擇性必修第二冊(cè))
- 24秋國(guó)家開(kāi)放大學(xué)《0-3歲嬰幼兒的保育與教育》期末大作業(yè)參考答案
評(píng)論
0/150
提交評(píng)論