江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省奉新縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.2.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.3.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.264.已知,則()A. B.C. D.5.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.6.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、7.已知集合,則()A. B.C. D.8.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.69.已知、分別是橢圓的左、右焦點,A是橢圓上一動點,圓C與的延長線、的延長線以及線段相切,若為其中一個切點,則()A. B.C. D.與2的大小關(guān)系不確定10.若是等差數(shù)列的前項和,,則()A.13 B.39C.45 D.2111.已知圓O的半徑為5,,過點P的2021條弦的長度組成一個等差數(shù)列,最短弦長為,最長弦長為,則其公差為()A. B.C. D.12.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的焦點,點分別是拋物線上位于第一、四象限的點,若,則的面積為__________.14.已知雙曲線M的中心在原點,以坐標(biāo)軸為對稱軸.從以下三個條件中任選兩個條件,并根據(jù)所選條件求雙曲線M的標(biāo)準(zhǔn)方程.①一個焦點坐標(biāo)為;②經(jīng)過點;③離心率為.你選擇的兩個條件是___________,得到的雙曲線M的標(biāo)準(zhǔn)方程是___________.15.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.16.已知函數(shù)有兩個極值點,則實數(shù)a的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經(jīng)過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.18.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標(biāo),若不存在,請說明理由.19.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)在時的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.20.(12分)在平面直角坐標(biāo)系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標(biāo);若不存在,請說明理由.21.(12分)在等差數(shù)列中,設(shè)前項和為,已知,.(1)求的通項公式;(2)令,求數(shù)列的前項和.22.(10分)已知點,直線,圓.(1)若連接點與圓心的直線與直線垂直,求實數(shù)的值;(2)若直線與圓相交于兩點,且弦的長為,求實數(shù)的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.2、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.3、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A4、C【解析】取中間值,化成同底利用單調(diào)性比較可得.【詳解】,,,故,故選:C5、B【解析】由題設(shè)命題的描述判斷、的真假,再判斷其復(fù)合命題的真假即可.【詳解】對于命題,僅當(dāng)時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B6、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.7、D【解析】由集合的關(guān)系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關(guān)系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎(chǔ)題.8、B【解析】分(甲乙)、(丙?。┰偻唤M和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙?。┎辉谕唤M,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B9、A【解析】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設(shè)圓C與直線的延長線、分別相切于點、,由切線的性質(zhì)可知:,,,結(jié)合橢圓的定義,即可得出結(jié)果.【詳解】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設(shè)圓C與直線的延長線、分別相切于點、,則由切線的性質(zhì)可知:,,,所以,所以,所以.故選A【點睛】本題主要考查圓與圓錐曲線的綜合,熟記橢圓的定義,以及切線的性質(zhì)即可,屬于??碱}型.10、B【解析】先根據(jù)等差數(shù)列的通項公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.11、B【解析】可得過點P的最長弦長為直徑,最短弦長為過點P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點P的最長弦長為直徑,,最短弦長為過點P的與垂直的弦,,公差.故選:B.12、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C二、填空題:本題共4小題,每小題5分,共20分。13、42【解析】由焦半徑公式求得參數(shù),得拋物線方程,從而可求得兩點縱坐標(biāo),再求得直線與軸的交點坐標(biāo)后可得面積【詳解】因為,所以,拋物線的方程為,把代入方程,得(舍去),即.同理,直線方程為,即.所以直線與軸交于點,所以.故答案為:4214、①.①②或①③或②③②.或或【解析】選①②,根據(jù)焦點坐標(biāo)及頂點坐標(biāo)直接求解,選①③,根據(jù)焦點坐標(biāo)及離心率求出即可得解,選②③,可由頂點坐標(biāo)及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標(biāo)準(zhǔn)方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標(biāo)準(zhǔn)方程為,選②③,由題意知,,,雙曲線的標(biāo)準(zhǔn)方程為.故答案為:①②;或①③;或②③;.15、3【解析】先求出拋物線的焦點坐標(biāo)和準(zhǔn)線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準(zhǔn)線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:316、【解析】由題可得有兩個不同正根,利用分離參數(shù)法得到.令,,只需和有兩個交點,利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域為,,要使函數(shù)有兩個極值點,只需有兩個不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個極值點,只需和有兩個交點,∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時,;當(dāng)時,;作出和的圖像如圖,所以,即,即實數(shù)a的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設(shè),則當(dāng)時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當(dāng),直線,,,,,所以當(dāng)時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關(guān)鍵是在兩個參數(shù)之間建立等量關(guān)系;③利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍.18、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設(shè)存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設(shè)直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.19、(1)最大值為9,最小值為;(2).【解析】(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而確定在的極值、端點值,比較它們的大小即可知最值.(2)討論參數(shù)a的符號,利用導(dǎo)數(shù)研究的單調(diào)性,結(jié)合已知區(qū)間的極值情況求參數(shù)a的范圍即可.【小問1詳解】由題,時,,則,令,得或1,則時,,單調(diào)遞增;時,,單調(diào)遞減;時,,單調(diào)遞增.∴在時取極大值,在時取極小值,又,,綜上,在區(qū)間上取得的最大值為9,最小值為.小問2詳解】,且,當(dāng)時,單調(diào)遞增,函數(shù)沒有極值;當(dāng)時,時,單調(diào)遞增;時,單調(diào)遞減;時,,單調(diào)遞增.∴在取得極大值,在取得極小值,則;當(dāng)時,時,單調(diào)遞增;時,單調(diào)遞減;時,,單調(diào)遞增.∴在取得極大值,在取得極小值,由得:.綜上,函數(shù)在區(qū)間存在極小值時a的取值范圍是.20、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達(dá)定理法結(jié)合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準(zhǔn)線的拋物線,設(shè)拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達(dá)定理,得,,假設(shè)存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論