版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京五中高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.2.已知橢圓經(jīng)過點(diǎn),當(dāng)該橢圓的四個(gè)頂點(diǎn)構(gòu)成的四邊形的周長(zhǎng)最小時(shí),其標(biāo)準(zhǔn)方程為()A. B.C. D.3.已知,為橢圓的左、右焦點(diǎn),P為橢圓上一點(diǎn),若,則P點(diǎn)的橫坐標(biāo)為()A. B.C.4 D.94.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.6.函數(shù)在單調(diào)遞增的一個(gè)必要不充分條件是()A. B.C. D.7.已知圓C過點(diǎn),圓心在x軸上,則圓C的方程為()A. B.C. D.8.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.9.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=010.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對(duì)11.雙曲線的漸近線方程和離心率分別是A. B.C. D.12.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來的一半,則點(diǎn)的對(duì)應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點(diǎn)的對(duì)應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左、右焦點(diǎn),點(diǎn)M是雙曲線E上的任意一點(diǎn)(不是頂點(diǎn)),過作角平分線的垂線,垂足為N,O是坐標(biāo)原點(diǎn).若,則雙曲線E的漸近線方程為__________14.已知橢圓的右頂點(diǎn)為,為上一點(diǎn),則的最大值為______.15.已知直線,拋物線上一動(dòng)點(diǎn)到直線l的距離為d,則的最小值是______16.若點(diǎn)P為雙曲線上任意一點(diǎn),則P滿足性質(zhì):點(diǎn)P到右焦點(diǎn)的距離與它到直線的距離之比為離心率e,若C的右支上存在點(diǎn)Q,使得Q到左焦點(diǎn)的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長(zhǎng)18.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個(gè)拱形橋架緊密相連,每個(gè)橋架的內(nèi)部有一個(gè)水平橫梁和八個(gè)與橫梁垂直的立柱,氣勢(shì)宏偉,素有“天下黃河第一橋”之稱.如圖②,一個(gè)拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標(biāo)系,已知,,,,立柱.(1)求立柱及橫梁的長(zhǎng);(2)求拋物線的方程和橋梁的拱高.19.(12分)如圖1,已知正方形的邊長(zhǎng)為,分別為的中點(diǎn),將正方形沿折成如圖2所示的二面角,點(diǎn)在線段上(含端點(diǎn))運(yùn)動(dòng),連接(1)若為的中點(diǎn),直線與平面交于點(diǎn),確定點(diǎn)位置,求線段的長(zhǎng);(2)若折成二面角大小為,是否存在點(diǎn)M,使得直線與平面所成的角為,若存在,確定出點(diǎn)的位置;若不存在,請(qǐng)說明理由20.(12分)已知圓的方程為(1)求圓的圓心及半徑;(2)是否存在直線滿足:經(jīng)過點(diǎn),且_________________?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面問題中并作答:條件①:被圓所截得的弦長(zhǎng)最長(zhǎng);條件②:被圓所截得的弦長(zhǎng)最短;條件③:被圓所截得的弦長(zhǎng)為注:如果選擇多個(gè)條件分別作答,按第一個(gè)解答計(jì)分21.(12分)同時(shí)拋擲兩顆骰子,觀察向上點(diǎn)數(shù).(1)試表示“出現(xiàn)兩個(gè)1點(diǎn)”這個(gè)事件相應(yīng)的樣本空間的子集;(2)求出現(xiàn)兩個(gè)1點(diǎn)”的概率;(3)求“點(diǎn)數(shù)之和為7”的概率.22.(10分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域?yàn)榧螦(1)求m的值;(2)當(dāng)時(shí),的值域?yàn)榧螧,若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C2、A【解析】把點(diǎn)代入橢圓方程得,寫出橢圓頂點(diǎn)坐標(biāo),計(jì)算四邊形周長(zhǎng)討論它取最小值時(shí)的條件即得解.【詳解】依題意得,橢圓的四個(gè)頂點(diǎn)為,順次連接這四個(gè)點(diǎn)所得四邊形為菱形,其周長(zhǎng)為,,當(dāng)且僅當(dāng),即時(shí)取“=”,由得a2=12,b2=4,所求標(biāo)準(zhǔn)方程為.故選:A【點(diǎn)睛】給定兩個(gè)正數(shù)和(兩個(gè)正數(shù)倒數(shù)和)為定值,求這兩個(gè)正數(shù)倒數(shù)和(兩個(gè)正數(shù)和)的最值問題,可借助基本不等式中“1”的妙用解答.3、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B4、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A5、D【解析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對(duì)稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)?,所以,如圖所示,所以,設(shè),,則,所以,故選:D.6、D【解析】求出導(dǎo)函數(shù),由于函數(shù)在區(qū)間單調(diào)遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上恒成立,而在區(qū)間上單調(diào)遞減,選項(xiàng)中只有是的必要不充分條件.選項(xiàng)AC是的充分不必要條件,選項(xiàng)B是充要條件.故選:D7、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點(diǎn)的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.8、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A9、C【解析】?jī)蓤A方程相減得出公共弦所在直線的方程.【詳解】?jī)蓤A方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C10、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對(duì)數(shù)也是正整數(shù)的三位數(shù)有,共3個(gè),所以以此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為,故選:B11、A【解析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計(jì)算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點(diǎn)睛】本題主要考查雙曲線的漸近線及離心率,屬于簡(jiǎn)單題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解12、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對(duì)應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】延長(zhǎng)交于點(diǎn),利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長(zhǎng)交于點(diǎn),∵是的平分線,,,又是中點(diǎn),所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.14、【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計(jì)算最值作答.【詳解】橢圓的右頂點(diǎn)為,設(shè)點(diǎn),則,即,且,于是得,因,則當(dāng)時(shí),,所以的最大值為.故答案為:15、##【解析】作直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),根據(jù)拋物線定義有,進(jìn)而判斷目標(biāo)式最小時(shí)的位置關(guān)系,結(jié)合點(diǎn)線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),則,,由拋物線定義知:,則,所以,要使目標(biāo)式最小,即最小,當(dāng)共線時(shí),又,此時(shí).故答案為:.16、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點(diǎn)的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點(diǎn)的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長(zhǎng)度.【小問1詳解】四棱錐,底面是一個(gè)直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所以,,取,則,所以,平面,所以直線平面.【小問2詳解】,,,設(shè)平面的法向量,則,即,取,則,設(shè)直線與平面所成的角為,則,所以,所以直線與平面所成角的余弦值為.【小問3詳解】設(shè)平面的法向量為,則,即,取,得,平面的法向量,設(shè)二面角的平面角為,則,所以,所以二面角的正弦值為.【小問4詳解】,平面的法向量,所以點(diǎn)到平面的距離為.【小問5詳解】設(shè)點(diǎn)在平面的射影為點(diǎn),則,所以點(diǎn)到平面的距離為,根據(jù),得解得,,,或者,,(舍)所以.18、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標(biāo),代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因?yàn)锳BFM是等腰梯形,由對(duì)稱性知:,所以,【小問2詳解】由(1)知,所以點(diǎn)M的橫坐標(biāo)為-18,則N的橫坐標(biāo)為-(18-5)=-13.設(shè)點(diǎn)M,N的縱坐標(biāo)分別為y1,y2,由圖形,知設(shè)拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當(dāng)x=-18時(shí),所以橋梁的拱高OH=3.24+4=7.24m.19、(1)是的延長(zhǎng)線與延長(zhǎng)線的交點(diǎn),且(2)存在,使得直線與平面所成的角為,且.【解析】(1)通過延長(zhǎng)、以及全等三角形確定點(diǎn)的位置并求得線段的長(zhǎng).(2)建立空間直角坐標(biāo)系,利用向量法判斷符合題意的點(diǎn)是否存在.【小問1詳解】延長(zhǎng),連接并延長(zhǎng),交的延長(zhǎng)線于,由于,所以,所以.所以是的延長(zhǎng)線與延長(zhǎng)線的交點(diǎn),且.【小問2詳解】由于,所以平面,,由于平面,所以平面平面.建立如圖所示空間直角坐標(biāo)系,,設(shè),,設(shè)平面的法向量為,則,故可設(shè),由于直線與平面所成的角為,所以,整理得,解得或(舍去)存在,使得直線與平面所成的角為,且.20、(1)圓心為,半徑為;(2)答案見解析.【解析】(1)寫出圓標(biāo)準(zhǔn)方程即得解;(2)選擇條件①:直線應(yīng)過圓心即直線過點(diǎn)和,即得解;選擇條件②:直線應(yīng)與垂直,求出直線的方程即得解;選擇條件③:不存在滿足條件的直線.【小問1詳解】解:由圓的方程整理可得,所以圓心為,半徑為.小問2詳解】選擇條件①:若直線被圓所截得的弦長(zhǎng)最長(zhǎng),則直線應(yīng)過圓心即直線過點(diǎn)和,所以直線的斜率為,則直線的方程為.選擇條件②:若直線過點(diǎn)被圓所截得的弦長(zhǎng)最短,則直線應(yīng)與垂直.又,所以.故直線方程為.選擇條件③:經(jīng)過點(diǎn)的直線被圓所截得的最短弦長(zhǎng),由于,所以不存在滿足條件的直線.21、(1)(2)(3)【解析】(1)由題意直接寫出基本事件即可得出答案.(2)樣本空間一共有個(gè)基本事件,由(1)可得答案.(3)列出“點(diǎn)數(shù)之和為7”的基本事件,從而可得答案.【小問1詳解】“同時(shí)拋擲兩顆骰子”的樣本空間是{1,2,…,6;1,2,…,6},其中i、j分別是拋擲第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 魚塘養(yǎng)魚課程設(shè)計(jì)
- 山西省財(cái)政稅務(wù)??茖W(xué)?!吨评渑c低溫技術(shù)原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 山西警察學(xué)院《商業(yè)銀行綜合業(yè)務(wù)模擬》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版帶司機(jī)定制化婚禮用車租賃合同2篇
- 二零二五年防火門安裝與維保服務(wù)合同3篇
- 2025年度生態(tài)環(huán)保產(chǎn)業(yè)廠房場(chǎng)地租賃與污染治理協(xié)議3篇
- 2025年度全國(guó)連鎖餐飲企業(yè)食品安全管理協(xié)議書范本4篇
- 2025年度農(nóng)業(yè)觀光旅游區(qū)鴨苗養(yǎng)殖與銷售合同4篇
- 2025年物聯(lián)網(wǎng)技術(shù)入股合作協(xié)議書3篇
- 二零二四年體育場(chǎng)館外包保潔與賽事支持合同3篇
- 勞務(wù)投標(biāo)技術(shù)標(biāo)
- 研發(fā)管理咨詢項(xiàng)目建議書
- 濕瘡的中醫(yī)護(hù)理常規(guī)課件
- 轉(zhuǎn)錢委托書授權(quán)書范本
- 一種配網(wǎng)高空作業(yè)智能安全帶及預(yù)警系統(tǒng)的制作方法
- 某墓園物業(yè)管理日常管護(hù)投標(biāo)方案
- 蘇教版六年級(jí)數(shù)學(xué)上冊(cè)集體備課記載表
- NUDD新獨(dú)難異 失效模式預(yù)防檢查表
- 內(nèi)蒙古匯能煤電集團(tuán)有限公司長(zhǎng)灘露天煤礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 22S702 室外排水設(shè)施設(shè)計(jì)與施工-鋼筋混凝土化糞池
- 2013日產(chǎn)天籟全電路圖維修手冊(cè)45車身控制系統(tǒng)
評(píng)論
0/150
提交評(píng)論