版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省連云港市東海高級中學高三二診模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.62.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.5.國家統(tǒng)計局服務業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%6.已知函數(shù)滿足,當時,,則()A.或 B.或C.或 D.或7.若,則的虛部是A.3 B. C. D.8.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或49.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.10.若,滿足約束條件,則的最大值是()A. B. C.13 D.11.已知隨機變量滿足,,.若,則()A., B.,C., D.,12.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式的第5項的系數(shù)為_____.14.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.15.在中,內(nèi)角所對的邊分別是.若,,則__,面積的最大值為___.16.已知兩點,,若直線上存在點滿足,則實數(shù)滿足的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.18.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.19.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.20.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.21.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.22.(10分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.2、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.3、C【解析】
化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關系,屬于基礎題.4、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質的應用,題目比較綜合.5、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎題.6、C【解析】
簡單判斷可知函數(shù)關于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結合對稱性,可得結果.【詳解】由,可知函數(shù)關于對稱當時,,可知在單調(diào)遞增則又函數(shù)關于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.7、B【解析】
因為,所以的虛部是.故選B.8、C【解析】
對a進行分類討論,結合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側重考查數(shù)學運算和數(shù)學抽象的核心素養(yǎng).9、A【解析】
根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據(jù)基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數(shù)學運算能力和數(shù)學建模能力,屬于較難題.10、C【解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結合的數(shù)學思想以及運算求解能力,屬于基礎題.11、B【解析】
根據(jù)二項分布的性質可得:,再根據(jù)和二次函數(shù)的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數(shù)的性質可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數(shù)的性質的應用,還考查了理解辨析的能力,屬于中檔題.12、B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、70【解析】
根據(jù)二項式定理的通項公式,可得結果.【詳解】由題可知:第5項為故第5項的的系數(shù)為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎題。14、0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉化能力。15、1【解析】
由正弦定理,結合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因為,所以由正弦定理可得,所以;所以,當,即時,三角形面積最大.故答案為(1).1(2).【點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎題型.16、【解析】
問題轉化為求直線與圓有公共點時,的取值范圍,利用數(shù)形結合思想能求出結果.【詳解】解:直線,點,,直線上存在點滿足,的軌跡方程是.如圖,直線與圓有公共點,圓心到直線的距離:,解得.實數(shù)的取值范圍為.故答案為:.【點睛】本題主要考查直線方程、圓、點到直線的距離公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.18、(1)(2)直線恒過定點,詳見解析【解析】
(1)依題意由橢圓的簡單性質可求出,即得橢圓C的方程;(2)設直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標,同理可求出點的坐標,根據(jù)的坐標可求出直線的方程,將其化簡成點斜式,即可求出定點坐標.【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設直線的方程為:,則∴或,∴,同理,當時,由有.∴,同理,又∴,當時,∴直線的方程為∴直線恒過定點,當時,此時也過定點..綜上:直線恒過定點.【點睛】本題主要考查利用橢圓的簡單性質求橢圓的標準方程,以及直線與橢圓的位置關系應用,定點問題的求法等,意在考查學生的邏輯推理能力和數(shù)學運算能力,屬于難題.19、(1)見解析(2)【解析】
(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.20、(1).(2).【解析】
(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質,即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版工業(yè)廠房設施定期檢修合同3篇
- 2025版信托資金借款合同模板與合同簽訂流程解讀8篇
- 2025年隨車吊租賃與港口貨物裝卸服務合同3篇
- 2025年度商業(yè)地產(chǎn)出售代理合同標的物市場分析報告3篇
- 2025年度綠色環(huán)保汽車制造合同3篇
- 2024著作權集體管理合同
- 2025版苗圃場租賃及苗木培育技術支持合同4篇
- 2025年度商業(yè)綜合體場地租賃合同范本12篇
- 二零二五年房產(chǎn)贖樓風險規(guī)避合同范本3篇
- 2025年度個人反擔保保證書(家庭裝修)3篇
- 2025年溫州市城發(fā)集團招聘筆試參考題庫含答案解析
- 2025版高考物理復習知識清單
- 除數(shù)是兩位數(shù)的除法練習題(84道)
- 2025年度安全檢查計劃
- 2024年度工作總結與計劃標準版本(2篇)
- 《光伏發(fā)電工程工程量清單計價規(guī)范》
- (完整版)保證藥品信息來源合法、真實、安全的管理措施、情況說明及相關證明
- 營銷專員績效考核指標
- 畢業(yè)論文-山東省農(nóng)產(chǎn)品出口貿(mào)易的現(xiàn)狀及對策研究
- 音樂思政課特色課程設計
- 2023年四川省樂山市中考數(shù)學試卷
評論
0/150
提交評論