




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題2.2基本不等式TOC\o"1-3"\t"正文,1"\h【考點(diǎn)1:由基本不等式求最值或取值范圍】 1【考點(diǎn)2:由基本不等式證明不等式】 1【考點(diǎn)3:利用基本不等式解決存在性或恒成立問題】 9【考點(diǎn)4:利用基本不等式解決實(shí)際問題】 14【考點(diǎn)1:由基本不等式求最值或取值范圍】【知識(shí)點(diǎn):基本不等式】一.基本不等式:eq\r(ab)≤eq\f(a+b,2)(1)基本不等式成立的條件:a>0,b>0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).二.幾個(gè)重要的不等式:(1)a2+b2≥2ab,a,b∈R(2)ba+ab≥2,ab>0,當(dāng)且僅當(dāng)(3)ab≤a+b22,a,b∈R,當(dāng)且僅當(dāng)(4)a2+b22≥a+b22三.利用基本不等式求最值問題:已知x>0,y>0,則:(1)如果積xy是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),x+y有最小值是2eq\r(p).(簡(jiǎn)記:積定和最?。?)如果和x+y是定值p,那么當(dāng)且僅當(dāng)x=y(tǒng)時(shí),xy有最大值是eq\f(p2,4).(簡(jiǎn)記:和定積最大)1.(2022春?甘孜州期末)y=x+4A.2 B.3 C.4 D.52.(2022春?青銅峽市校級(jí)期末)已知正數(shù)x,y滿足x+y=4,則xy的最大值()A.2 B.4 C.6 D.83.(2022秋?渝中區(qū)校級(jí)月考)已知正實(shí)數(shù)a,b滿足4a+b+1b+1=1A.6 B.8 C.10 D.124.(2022春?尖山區(qū)校級(jí)期末)已知x>0,y>0,且2x+y=xy,則x+2y的最小值為()A.8 B.82 C.9 D.5.(2022春?內(nèi)江期末)已知正實(shí)數(shù)a、b滿足a+b=4,則(a+1A.22+2 B.4 C.2546.(2022春?內(nèi)江期末)已知正實(shí)數(shù)a、b滿足1a+1b=mA.{2} B.[2,+∞) C.(0,2] D.(0,+∞)7.(2022春?溫州期末)若正數(shù)a,b滿足a+b=ab,則a+2b的最小值為()A.6 B.42 C.3+22 8.(2022春?朝陽區(qū)校級(jí)期末)已知x>53,求y=x9.(2022春?麗江期末)若正數(shù)a,b滿足a+2b=ab,則2a+b的最小值為.10.(2022春?臺(tái)州期末)已知非負(fù)實(shí)數(shù)x,y滿足13x+y+12y+2=1,則x11.(2022春?石家莊期末)已知ab>0,a+b=1,則a+4bab的最小值為12.(2022春?長(zhǎng)春期末)已知a,b都是非零實(shí)數(shù),若a2+4b2=3,則1a2+13.(2022春?嵐山區(qū)校級(jí)月考)已知x>12,y>3,且2x+y=7,則114.(2022?煙臺(tái)三模)當(dāng)x>0時(shí),3xx2+415.(2022春?西青區(qū)校級(jí)月考)已知x>0,y>0,且x+2y=2,則4x+x+3y16.(2022春?溫州期中)已知a>b>0,當(dāng)2a+4a+b+1a?b17.(2022?南京模擬)(1)已知x>3,求4x?3(2)已知x,y是正實(shí)數(shù),且x+y=1,求1x18.(2021秋?新泰市校級(jí)期末)已知實(shí)數(shù)a>0,b>0,a+2b=2.(1)求1a(2)求a2+4b2+5ab的最大值.【方法技巧1】通過拼湊法利用基本不等式求最值的策略拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵,利用拼湊法求解最值應(yīng)注意以下幾個(gè)方面的問題:(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo);(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.【方法技巧2】通過常數(shù)代換法利用基本不等式求最值的步驟常數(shù)代換法適用于求解條件最值問題.通過此種方法利用基本不等式求最值的基本步驟為:(1)根據(jù)已知條件或其變形確定定值(常數(shù));(2)把確定的定值(常數(shù))變形為1;(3)把“1”的表達(dá)式與所求最值的表達(dá)式相乘或相除,進(jìn)而構(gòu)造和或積的形式;(4)利用基本不等式求解最值.【考點(diǎn)2:由基本不等式證明不等式】1.(2022春?郫都區(qū)校級(jí)期末)若實(shí)數(shù)x、y滿足x2+y2=1+xy,則下列結(jié)論中,正確的是()A.x+y≤1 B.x+y≥2 C.x2+y2≥1 D.x2+y2≤22.(2022春?尖山區(qū)校級(jí)月考)若a>0,b>0,a+b=2,則()A.a(chǎn)b≥1 B.a(chǎn)+b≥2 C.a(chǎn)2+b2≥23.(2022春?肥東縣月考)對(duì)于不等式①4+6>25,②x+1xA.①③正確,②錯(cuò)誤 B.②③正確,①錯(cuò)誤 C.①②錯(cuò)誤,③正確 D.①③錯(cuò)誤,②正確【考點(diǎn)3:利用基本不等式解決存在性或恒成立問題】1.(2021秋?武清區(qū)校級(jí)月考)設(shè)x>0,y>0,設(shè)2x+3y=1,若3x+2y>m2A.{x|x≤﹣6或x≥4} B.{x|x≤﹣4或x≥6} C.{x|﹣6<x<4} D.{x|﹣4<x<6}2.(2021秋?蘭山區(qū)校級(jí)期中)已知a>0,b>0,a+2b=ab,若不等式2a+b≥2m2﹣9恒成立,則m的最大值為()A.1 B.2 C.3 D.73.(2021秋?新興縣校級(jí)月考)已知m>0,xy>0,當(dāng)x+y=2時(shí),不等式mx+1A.2≤m<2 B.m≥1 C.0<m≤1 D.1<m4.(2022春?合肥期末)若兩個(gè)正實(shí)數(shù)x,y滿足4x+1y=1,且不等式x5.(2021秋?河南月考)已知x、y為兩個(gè)正實(shí)數(shù),且不等式ax+y≤12x+6.(2021秋?黑龍江期末)已知x>0,y>0且1x+9y=1,求使不等式x+y7.(2020秋?安慶期末)已知正實(shí)數(shù)x,y滿足4x+4y=1.(1)求xy的最大值;(2)若不等式4x+18.(2021秋?玄武區(qū)校級(jí)月考)已知正數(shù)x,y滿足2x+y﹣xy=0.(1)求2x+y的最小值;(2)若x(y+2)?42>m9.(2021秋?華龍區(qū)校級(jí)期中)已知x>0,y>0,且x+y=2.(1)求1x(2)若4x+1﹣mxy≥0恒成立,求m的最大值.【考點(diǎn)4:利用基本不等式解決實(shí)際問題】【知識(shí)點(diǎn):利用基本不等式解決實(shí)際問題】(1)此類型的題目往往較長(zhǎng),解題時(shí)需認(rèn)真閱讀,從中提煉出有用信息,建立數(shù)學(xué)模型,轉(zhuǎn)化為數(shù)學(xué)問題求解;(2)當(dāng)運(yùn)用基本不等式求最值時(shí),若等號(hào)成立的自變量不在定義域內(nèi)時(shí),就不能使用基本不等式求解,此時(shí)可根據(jù)變量的范圍用對(duì)應(yīng)函數(shù)的單調(diào)性求解.1.(2022春?浦東新區(qū)校級(jí)月考)某工廠的產(chǎn)值第二年比第一年的增長(zhǎng)率是P1,第三年比第二年的增長(zhǎng)率是P2,而這兩年的平均增長(zhǎng)率為P,在P1+P2為定值的情況下,P的最大值為(用P1、P1表示).2.(2021秋?陽春市校級(jí)月考)用一段長(zhǎng)為32m的籬笆圍成一個(gè)矩形菜園,問這個(gè)矩形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品終端配送合同樣本
- 深圳市商業(yè)地產(chǎn)租賃合同
- 學(xué)校與教師簽訂的勞動(dòng)合同
- 八小時(shí)工作制勞動(dòng)合同模板
- 生態(tài)農(nóng)業(yè)種植技術(shù)服務(wù)合同
- 游泳池常年服務(wù)承包合同范本教學(xué)用
- 農(nóng)用土地租賃合同協(xié)議書
- Module 1 Unit 1 I want a hot dog,please(教學(xué)設(shè)計(jì))2024-2025學(xué)年外研版(三起)英語六年級(jí)下冊(cè)
- 11 再塑生命的人2024-2025學(xué)年新教材七年級(jí)上冊(cè)語文新教學(xué)設(shè)計(jì)(統(tǒng)編版2024)
- 電競(jìng)比賽承辦合同范本
- 定量包裝商品培訓(xùn)
- 毛戈平-+毛戈平深度報(bào)告:再論毛戈平商業(yè)模式與核心壁壘:個(gè)人IP+化妝學(xué)校+線下服務(wù)
- 第二章美容手術(shù)的特點(diǎn)及其實(shí)施中的基本原則美容外科學(xué)概論講解
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末考試生物試卷含答案
- 2025年“春訓(xùn)”學(xué)習(xí)心得體會(huì)例文(3篇)
- 中央2025年公安部部分直屬事業(yè)單位招聘84人筆試歷年參考題庫附帶答案詳解
- 2025年春新外研版(三起)英語三年級(jí)下冊(cè)課件 Unit4第1課時(shí)Startup
- 2025年職業(yè)教案編寫指南:教師技巧
- 人教版(2025新版)七年級(jí)下冊(cè)數(shù)學(xué)第七章 相交線與平行線 單元測(cè)試卷(含答案)
- 2025-2025學(xué)年度第二學(xué)期高二物理教學(xué)計(jì)劃
- 幼兒園市級(jí)課一等獎(jiǎng)-大班語言健康繪本《我的情緒小怪獸》有聲繪本課件
評(píng)論
0/150
提交評(píng)論