版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京海淀外國(guó)語(yǔ)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.632.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.3.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.4.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.5.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.6.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.7.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.8.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.19.如圖,某幾何體的三視圖是由三個(gè)邊長(zhǎng)為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點(diǎn)O的位置有關(guān)10.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長(zhǎng)軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.11.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________.14.集合,,則_____.15.在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角的余弦值為;④若正方體的棱長(zhǎng)為2,則的最小值為;其中說(shuō)法正確的是____________(寫出所有說(shuō)法正確的編號(hào))16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.18.(12分)如圖,點(diǎn)為圓:上一動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,試問(wèn)在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說(shuō)明理由.19.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;(2)求證:對(duì)上的任意兩個(gè)實(shí)數(shù),,總有成立.20.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)過(guò)點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.22.(10分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點(diǎn),,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)椋裕?,所以?shù)列是等比數(shù)列,又因?yàn)?,所以?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.2、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱,即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)椋鋱D象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,∴的圖象關(guān)于點(diǎn)成中心對(duì)稱.可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來(lái)判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.3、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.4、A【解析】
可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.5、B【解析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題6、C【解析】
由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.7、D【解析】
利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.9、B【解析】
根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長(zhǎng)為2的正方體挖去一個(gè)四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長(zhǎng)為2的正方形,頂點(diǎn)O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】
求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿足=2,則=2,化簡(jiǎn)得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.11、B【解析】
試題分析:通過(guò)逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題12、A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出可行域,通過(guò)平移基準(zhǔn)直線到可行域邊界位置,由此求得目標(biāo)函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點(diǎn),,構(gòu)成的三角形及其內(nèi)部,當(dāng)直線過(guò)點(diǎn)時(shí),取得最小值.故答案為:【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因?yàn)楸硎緸槠鏀?shù),故.故答案為:【點(diǎn)睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡(jiǎn)單題.15、①②④【解析】
①∵,∴平面
,得出上任意一點(diǎn)到平面的距離相等,所以判斷命題①;②由已知得出點(diǎn)P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過(guò)作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),根據(jù)對(duì)稱性和兩點(diǎn)之間線段最短,可求得當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點(diǎn)到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運(yùn)動(dòng)時(shí),點(diǎn)P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,設(shè)正方體的棱長(zhǎng)為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過(guò)作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),則,所以,當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.因?yàn)檎襟w的棱長(zhǎng)為2,所以設(shè)點(diǎn)的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點(diǎn)睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對(duì)稱的思想,兩點(diǎn)之間線段最短進(jìn)行求解,屬于難度題.16、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點(diǎn):1.三視圖;2.空間幾何體的表面積與體積.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)?,所以,,,或,或,因?yàn)?,所以所以;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)(2)不存在;詳見解析【解析】
(1)設(shè),,,通過(guò),即為的中點(diǎn),轉(zhuǎn)化求解,點(diǎn)的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點(diǎn)在橢圓上可得,②,將①代入②可得,該方程無(wú)解,問(wèn)題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點(diǎn),由中點(diǎn)坐標(biāo)公式得,即,又點(diǎn)在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因?yàn)?,故,即①,?lián)立,消去得:,設(shè),,,,,因?yàn)樗倪呅螢槠叫兴倪呅?,故,點(diǎn)在橢圓上,故,整理得②,將①代入②,得,該方程無(wú)解,故這樣的直線不存在.【點(diǎn)睛】本題考查點(diǎn)的軌跡方程的求法、滿足條件的點(diǎn)是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.19、(1)(2)見解析【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說(shuō)明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實(shí)數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時(shí),.∵,∴.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計(jì)算能力,屬于難題.20、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.21、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個(gè)關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦山安全設(shè)備招投標(biāo)方案范本
- 劇院入口廣告牌安裝協(xié)議
- 倉(cāng)庫(kù)保管員安全監(jiān)護(hù)守則
- 企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)控制制度
- 研發(fā)鏈豬場(chǎng)租賃協(xié)議
- 2024全新建筑設(shè)備安裝包工合同范本下載3篇
- 水資源利用打井施工合同范本
- 音樂(lè)教室兼職教師聘任書
- 通信設(shè)施維修腳手架租賃協(xié)議
- 企業(yè)電工安全操作規(guī)程
- 【9歷期末】安徽省合肥市包河區(qū)智育聯(lián)盟2023-2024學(xué)年九年級(jí)上學(xué)期1月期末歷史試題
- 2024年短劇拍攝及制作協(xié)議版
- 2024年度專業(yè)外語(yǔ)培訓(xùn)機(jī)構(gòu)兼職外教聘任合同3篇
- 汽車維修安全生產(chǎn)管理制度(3篇)
- 個(gè)人的車位租賃合同范文-個(gè)人車位租賃合同簡(jiǎn)單版
- 2025-2025學(xué)年小學(xué)數(shù)學(xué)教研組工作計(jì)劃
- 水族館改造合同
- 大學(xué)生朋輩心理輔導(dǎo)智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 中國(guó)馬克思主義與當(dāng)代2021版教材課后思考題
- 河道整治工程項(xiàng)目實(shí)施的重點(diǎn)難點(diǎn)和解決方案(完整版)
- 作物蒸發(fā)蒸騰量計(jì)算公式
評(píng)論
0/150
提交評(píng)論