版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省昆明市農(nóng)業(yè)大學附屬中學高考全國統(tǒng)考預測密卷數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1282.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)的模為()A. B.4 C.2 D.3.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.4.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.35.已知集合,則()A. B.C. D.6.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為()A. B. C. D.7.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)8.函數(shù)f(x)=lnA. B. C. D.9.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.10.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P211.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或12.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.15.設(shè)f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務(wù)培訓,設(shè)來自甲公司的人數(shù)為,求的分布列及數(shù)學期望.18.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當時,.(3)證明:當時,.19.(12分)已知數(shù)列,其前項和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.20.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.21.(12分)已知,函數(shù),(是自然對數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點的個數(shù);(Ⅱ)若,且命題“,”是假命題,求實數(shù)的取值范圍.22.(10分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、D【解析】
由復數(shù)的綜合運算求出,再寫出其共軛復數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數(shù)的運算,考查共軛復數(shù)與模的定義,屬于基礎(chǔ)題.3、C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學生的計算能力和應(yīng)用能力.4、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學生的運算能力,是一道容易題.5、C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.6、A【解析】
設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術(shù)可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.7、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質(zhì),意在考查學生對該知識的理解掌握水平和分析推理能力.8、C【解析】因為fx=lnx2-4x+4x-23=9、B【解析】
根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.10、C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.11、D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.12、A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應(yīng)用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,由二倍角公式得到,故得到.故答案為.14、【解析】
由題意可設(shè),,,由向量的坐標運算,以及恒成立思想可設(shè),的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.15、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數(shù)求面積的最值問題,意在考查學生的計算能力和應(yīng)用能力.16、【解析】
由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),乙公司影響度高;(2)見解析,【解析】
(1)利用各小矩形的面積和等于1可得a,由導游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應(yīng)取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導游優(yōu)秀率為:,乙公司的導游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數(shù)據(jù)處理與數(shù)學運算的能力,是一道中檔題.18、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導函數(shù),對參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調(diào)遞增;當,時,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當,時,,則在上單調(diào)遞減;當,時,令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因為,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數(shù)研究含參函數(shù)的單調(diào)性,利用導數(shù)證明不等式,屬于難題.19、(1)證明見解析;(2).【解析】
(1)用數(shù)學歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個整數(shù),∴,從而又當時,有,綜上,的最小值為.【點睛】本題主要考查由遞推關(guān)系得通項公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學歸納法證明數(shù)列是等差數(shù)列,屬于難題.20、(1);(2).【解析】
(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數(shù)列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎(chǔ)題.21、(1)當時,沒有極值點,當時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當時,對,,當時,解得,在上是減函數(shù),在上是增函數(shù)。所以,當時,沒有極值點,當時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025五金供銷合同范文
- 2025北京昌平初二(上)期末數(shù)學真題試卷(含答案解析)
- 2024-2025年中國LCD面板行業(yè)發(fā)展前景預測及投資戰(zhàn)略研究報告
- 牡丹江二硫代二苯甲酸項目可行性研究報告
- 2025年中國咳嗽治療藥行業(yè)發(fā)展運行現(xiàn)狀及投資策略研究報告
- 2025年色漿項目立項申請報告
- CPPR管項目可行性研究報告
- 甘肅省某工業(yè)物流園項目可行性研究報告
- 水母標本項目可行性研究報告
- 2025做代理簽的合同范本
- QC成果解決鋁合金模板混凝土氣泡、爛根難題
- 管線管廊布置設(shè)計規(guī)范
- 提升教練技術(shù)--回應(yīng)ppt課件
- 招聘與錄用選擇題
- 《工資、薪金的個人所得稅的計算》教學設(shè)計
- 精品洲際酒店集團皇冠酒店設(shè)計標準手冊
- 周視瞄準鏡的初步設(shè)計-北京理工大學-光電學院小學期作業(yè)
- Writing寫作教學設(shè)計
- 心房起搏電極的位置選擇ppt課件
- 四川省南充市2019-2020學年九年級上期末數(shù)學試卷(含答案解析)
- 上海市寶山區(qū)2019屆高三英語一模含答案
評論
0/150
提交評論