版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省新鄉(xiāng)市重點中學2025屆高考數學二模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的前n項和為,,則A.3 B.4 C.5 D.62.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.3.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.4.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數是()A.0 B.1 C.2 D.35.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.06.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.57.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.8.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.集合,,則()A. B. C. D.10.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數的取值范圍是()A. B. C. D.11.已知函數,若,則等于()A.-3 B.-1 C.3 D.012.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.15.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.16.在平面直角坐標系xOy中,已知A0,a,B3,a+4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.18.(12分)已知均為正實數,函數的最小值為.證明:(1);(2).19.(12分)在中,角的對邊分別為,若.(1)求角的大?。唬?)若,為外一點,,求四邊形面積的最大值.20.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.21.(12分)某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統(tǒng)計了2019年1月份所有用戶的日平均步數,規(guī)定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:運動達人非運動達人總計男3560女26總計100(1)(i)將列聯表補充完整;(ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.附:22.(10分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
方法一:設等差數列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.2、C【解析】
設出兩人到達小王的時間,根據題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內,如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數學運算能力.3、B【解析】
由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.4、C【解析】
建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數.【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.5、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.6、B【解析】
利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.7、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.8、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.9、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.10、D【解析】
因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.11、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.12、A【解析】
根據指數型函數所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數型函數的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
做出滿足條件的可行域,根據圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數過點時取得最大值,聯立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數形結合求線性目標函數的最值,屬于基礎題.14、【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.15、【解析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.16、(-53,【解析】
求出AB的長度,直線方程,結合△ABC的面積為5,轉化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉化為圓心到直線的距離是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點睛】本題考查正弦定理以及余弦定理的應用,三角形的面積公式,也考查計算能力,屬于基礎題.18、(1)證明見解析(2)證明見解析【解析】
(1)運用絕對值不等式的性質,注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結論,注意等號成立的條件.【詳解】(1)由題意,則函數,又函數的最小值為,即,由柯西不等式得,當且僅當時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當且僅當時同時取“=”)由(1)知,,所以,將以上三式相加得即.【點睛】本題主要考查絕對值不等式、柯西不等式等基礎知識,考查運算能力,屬于中檔題.19、(1)(2)【解析】
(1)根據正弦定理化簡等式可得,即;(2)根據題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.20、(1)證明見解析;(2)證明見解析;【解析】
(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數形結合思想,屬于中檔題.21、(1)(i)填表見解析(ii)沒有的把握認為“日平均走步數和性別是否有關”(2)詳見解析【解析】
(1)(i)由已給數據可完成列聯表,(ii)計算出后可得;(2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,,由二項分布概率公式計算出各概率得分布列,由期望公式計算期望.【詳解】解(1)(i)運動達人非運動達人總計男352560女142640總計4951100(ii)由列聯表得所以沒有的把握認為“日平均走步數和性別是否有關”(2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,.易知所以的分布列為0123.【點睛】本題考查列聯表,考查獨立性檢驗,考查隨機變量的概率分布列和期望.屬于中檔題.本題難點在于認識到.22、(1);(2)不能,理由見解析【解析】
(1)設,則,由此即可求出橢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 乙炔知識培訓課件
- (教研室)2023屆山東省德州市、煙臺市高考一模生物試題 附答案
- 春季農業(yè)生產全解析
- 年產8萬套臺球桿及臺球桌項目可行性研究報告寫作模板-申批備案
- 二零二五年度城市供水管網改造承包協議3篇
- 育嬰護理知識培訓課件
- 美容院財務知識培訓課件
- 二零二五年度工業(yè)自動化生產線能源躉購電合同范本3篇
- 中國加入世界貿易組織紀念日
- 臨床低鉀血癥護理查房
- 便攜式血糖儀管理和臨床操作規(guī)范
- 學校工作總結 學校工作總結美篇標題(15篇)
- 高三后期班級管理方法
- 《Windows 網絡操作系統(tǒng)》-教學教案
- 2023年醫(yī)院招聘護士考試試題及參考答案
- 花籃拉桿懸挑架培訓課件
- GB/T 7597-2007電力用油(變壓器油、汽輪機油)取樣方法
- 新合同會簽審批表
- GA 1517-2018金銀珠寶營業(yè)場所安全防范要求
- 氣體狀態(tài)方程課件
- 分期還款協議書
評論
0/150
提交評論