版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題10幾何壓軸中的證明與猜想題型幾何壓軸中證明與猜想題指有些數(shù)學(xué)問題的條件、結(jié)論或解決方法不確定或不唯一,需要根據(jù)題目的特點(diǎn)進(jìn)行分析、探索,從而確定出符合要求的答案(一個(gè)、多個(gè)或所有答案)或探索出解決問題的多種方法.該題型對(duì)考查學(xué)生思維能力和創(chuàng)造能力有積極的作用,是近幾年各地中考命題的一個(gè)熱點(diǎn).通常這類題目有以下幾種類型:條件開放與探索,結(jié)論開放和探索,條件與結(jié)論都開放與探索及方案設(shè)計(jì)、命題組合型、問題開放型等.考生在復(fù)習(xí)時(shí),首先對(duì)于基礎(chǔ)知識(shí)一定要復(fù)習(xí)全面,并力求扎實(shí)牢靠;其次是要加強(qiáng)對(duì)解答這類試題的練習(xí),注意各知識(shí)點(diǎn)之間的因果聯(lián)系,選擇合適的解題途徑完成最后的解答.由于題型新穎、綜合性強(qiáng)、結(jié)構(gòu)獨(dú)特等,此類問題的一般解題思路并無固定模式或套路,但是可以從以下幾個(gè)角度考慮:1.利用特殊值(特殊點(diǎn)、特殊數(shù)量、特殊線段、特殊位置等)進(jìn)行歸納、概括,從特殊到一般,從而得出規(guī)律.2.反演推理法(反證法),即假設(shè)結(jié)論成立,根據(jù)假設(shè)進(jìn)行推理,看是推導(dǎo)出矛盾還是能與已知條件一致.3.分類討論法.當(dāng)命題的題設(shè)和結(jié)論不唯一確定,難以統(tǒng)一解答時(shí),則需要按可能出現(xiàn)的情況做到既不重復(fù)也不遺漏,分門別類加以討論求解,將不同結(jié)論綜合歸納得出正確結(jié)果.4.類比猜想法.即由一個(gè)問題的結(jié)論或解決方法類比猜想出另一個(gè)類似問題的結(jié)論或解決方法,并加以嚴(yán)密的論證. (2022·貴州黔西·統(tǒng)考中考真題)如圖1,在正方形ABCD中,E,F(xiàn)分別是BC,CD邊上的點(diǎn)(點(diǎn)E不與點(diǎn)B,C重合),且SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;(2)猜想BE,EF,DF三條線段之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;(3)如圖2,連接AC,G是CB延長線上一點(diǎn),SKIPIF1<0,垂足為K,交AC于點(diǎn)H且SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,請(qǐng)用含a,b的代數(shù)式表示EF的長.(1)先利用正方表的性質(zhì)求得SKIPIF1<0,SKIPIF1<0,再利用判定三角形全等的“SAS”求得三角形全等,然后由全等三角形的性質(zhì)求解;(2)延長CB至M,使SKIPIF1<0,連接AM,先易得SKIPIF1<0,推出SKIPIF1<0,SKIPIF1<0,進(jìn)而得到SKIPIF1<0,最后利用全等三角形的性質(zhì)求解;(3)過點(diǎn)H作SKIPIF1<0于點(diǎn)N,易得SKIPIF1<0,進(jìn)而求出SKIPIF1<0,再根據(jù)(2)的結(jié)論求解.【答案】(1)見解析(2)SKIPIF1<0,見解析(3)SKIPIF1<0【詳解】(1)證明:∵四邊形ABCD是正方形,∴SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:BE,EF,DF存在的數(shù)量關(guān)系為SKIPIF1<0.理由如下:延長CB至M,使SKIPIF1<0,連接AM,則SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴∠MAE=∠FAE,在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴EM=EF,∵EM=BE+BM,∴SKIPIF1<0;(3)解:過點(diǎn)H作SKIPIF1<0于點(diǎn)N,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由(2)知,SKIPIF1<0.本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),特殊角的三角函數(shù)值,作出輔助線,構(gòu)建三角形全等是解答關(guān)鍵.(2022·山東濟(jì)南·統(tǒng)考中考真題)如圖1,△ABC是等邊三角形,點(diǎn)D在△ABC的內(nèi)部,連接AD,將線段AD繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到線段AE,連接BD,DE,CE.(1)判斷線段BD與CE的數(shù)量關(guān)系并給出證明;(2)延長ED交直線BC于點(diǎn)F.①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),直接用等式表示線段AE,BE和CE的數(shù)量關(guān)系為_______;②如圖3,當(dāng)點(diǎn)F為線段BC中點(diǎn),且ED=EC時(shí),猜想∠BAD的度數(shù),并說明理由.(1)利用等邊三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)易得到SKIPIF1<0,再由全等三角形的性質(zhì)求解;(2)①根據(jù)線段SKIPIF1<0繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0得到SKIPIF1<0是等邊三角形,由等邊三角形的性質(zhì)和(1)的結(jié)論來求解;②過點(diǎn)A作SKIPIF1<0于點(diǎn)G,連接AF,根據(jù)等邊三角形的性質(zhì)和銳角三角函數(shù)求值得到SKIPIF1<0,SKIPIF1<0,進(jìn)而得到SKIPIF1<0,進(jìn)而求出SKIPIF1<0,結(jié)合SKIPIF1<0,ED=EC得到SKIPIF1<0,再用等腰直角三角形的性質(zhì)求解.【答案】(1)SKIPIF1<0,理由見解析(2)①SKIPIF1<0;②SKIPIF1<0,理由見解析【詳解】(1)解:SKIPIF1<0.證明:∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0.∵線段SKIPIF1<0繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:①SKIPIF1<0理由:∵線段SKIPIF1<0繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,由(1)得SKIPIF1<0,∴SKIPIF1<0;②過點(diǎn)A作SKIPIF1<0于點(diǎn)G,連接AF,如下圖.∵SKIPIF1<0是等邊三角形,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0是等邊三角形,點(diǎn)F為線段BC中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0.本題主要考查了等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形,相似三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),理解相關(guān)知識(shí)是解答關(guān)鍵.(2022·廣東深圳·統(tǒng)考中考真題)(1)【探究發(fā)現(xiàn)】如圖①所示,在正方形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0邊上一點(diǎn),將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0處,延長SKIPIF1<0交SKIPIF1<0邊于SKIPIF1<0點(diǎn).求證:SKIPIF1<0(2)【類比遷移】如圖②,在矩形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0邊上一點(diǎn),且SKIPIF1<0將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0處,延長SKIPIF1<0交SKIPIF1<0邊于點(diǎn)SKIPIF1<0延長SKIPIF1<0交SKIPIF1<0邊于點(diǎn)SKIPIF1<0且SKIPIF1<0求SKIPIF1<0的長.(3)【拓展應(yīng)用】如圖③,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0邊上的三等分點(diǎn),SKIPIF1<0將SKIPIF1<0沿SKIPIF1<0翻折得到SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0求SKIPIF1<0的長.(1)根據(jù)將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0處,四邊形SKIPIF1<0是正方形,得SKIPIF1<0,SKIPIF1<0,即得SKIPIF1<0,可證SKIPIF1<0;(2)延長SKIPIF1<0,SKIPIF1<0交于SKIPIF1<0,設(shè)SKIPIF1<0,在SKIPIF1<0中,有SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因SKIPIF1<0,有SKIPIF1<0,即解得SKIPIF1<0的長為SKIPIF1<0;(3)分兩種情況:(Ⅰ)當(dāng)SKIPIF1<0時(shí),延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0是SKIPIF1<0的角平分線,有SKIPIF1<0①,在SKIPIF1<0中,SKIPIF1<0②,可解得SKIPIF1<0,SKIPIF1<0;(Ⅱ)當(dāng)SKIPIF1<0時(shí),延長SKIPIF1<0交SKIPIF1<0延長線于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0交SKIPIF1<0延長線于SKIPIF1<0,同理解得SKIPIF1<0,SKIPIF1<0.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0【詳解】證明:(1)SKIPIF1<0將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0處,四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:延長SKIPIF1<0,SKIPIF1<0交于SKIPIF1<0,如圖:設(shè)SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的長為SKIPIF1<0;(3)(Ⅰ)當(dāng)SKIPIF1<0時(shí),延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,如圖:設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0沿SKIPIF1<0翻折得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的角平分線,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0①,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0②,聯(lián)立①②可解得SKIPIF1<0,SKIPIF1<0;(Ⅱ)當(dāng)SKIPIF1<0時(shí),延長SKIPIF1<0交SKIPIF1<0延長線于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0交SKIPIF1<0延長線于SKIPIF1<0,如圖:同理SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,可解得SKIPIF1<0,SKIPIF1<0,綜上所述,SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0.本題考查四邊形的綜合應(yīng)用,涉及全等三角形的判定,相似三角形的判定與性質(zhì),三角形角平分線的性質(zhì),勾股定理及應(yīng)用等知識(shí),解題的關(guān)鍵是方程思想的應(yīng)用.1.(2022·安徽合肥·校聯(lián)考三模)已知SKIPIF1<0分別是四邊形SKIPIF1<0和四邊形SKIPIF1<0的對(duì)角線,點(diǎn)E在SKIPIF1<0的內(nèi)部,SKIPIF1<0.(1)探索發(fā)現(xiàn):如圖1,當(dāng)四邊形SKIPIF1<0和四邊形SKIPIF1<0均為正方形時(shí),則SKIPIF1<0的度數(shù)為;(2)引申運(yùn)用:如圖2,當(dāng)四邊形SKIPIF1<0和四邊形SKIPIF1<0均為矩形時(shí),①若SKIPIF1<0,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;②若SKIPIF1<0,SKIPIF1<0,求線段SKIPIF1<0的長;(3)聯(lián)系拓展:如圖3,當(dāng)四邊形SKIPIF1<0和四邊形SKIPIF1<0均為菱形且SKIPIF1<0時(shí),設(shè)SKIPIF1<0,試探究a,b,c三者之間的等量關(guān)系,并說明理由.2.(2022·浙江寧波·??既#净A(chǔ)鞏固】(1)如圖①,在四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,求證∶SKIPIF1<0;(2)【嘗試應(yīng)用】如圖②,在平行四邊形SKIPIF1<0中,點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0與SKIPIF1<0互補(bǔ),SKIPIF1<0,求SKIPIF1<0的長;(3)【拓展提高】如圖③,在菱形SKIPIF1<0中,SKIPIF1<0為其內(nèi)部一點(diǎn),SKIPIF1<0與SKIPIF1<0互補(bǔ),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.3.(2022·山東濟(jì)南·統(tǒng)考模擬預(yù)測(cè))(1)【問題情境】如圖SKIPIF1<0,四邊形SKIPIF1<0是正方形,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上的一個(gè)動(dòng)點(diǎn),以SKIPIF1<0為邊在SKIPIF1<0的右側(cè)作正方形SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系是______;(2)【類比探究】如圖SKIPIF1<0,四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上的一個(gè)動(dòng)點(diǎn),以SKIPIF1<0為邊在SKIPIF1<0的右側(cè)作矩形SKIPIF1<0,且SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0.判斷線段SKIPIF1<0與SKIPIF1<0有怎樣的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(3)【拓展提升】如圖3,在(2)的條件下,連接SKIPIF1<0,則SKIPIF1<0的最小值為______.4.(2022·江蘇蘇州·??家荒#纠斫飧拍睢慷x:如果三角形有兩個(gè)內(nèi)角的差為SKIPIF1<0,那么這樣的三角形叫做“準(zhǔn)直角三角形”.(1)已知△ABC是“準(zhǔn)直角三角形”,且SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0______SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0______SKIPIF1<0;【鞏固新知】(2)如圖①,在SKIPIF1<0中,SKIPIF1<0,點(diǎn)D在SKIPIF1<0邊上,若SKIPIF1<0是“準(zhǔn)直角三角形”,求SKIPIF1<0的長;【解決問題】(3)如圖②,在四邊形SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0是“準(zhǔn)直角三角形”,求SKIPIF1<0的面積.5.(2022·福建福州·福建省福州教育學(xué)院附屬中學(xué)??寄M預(yù)測(cè))問題發(fā)現(xiàn).(1)如圖SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上任意一點(diǎn),則SKIPIF1<0的最小值為______.(2)如圖SKIPIF1<0,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0、點(diǎn)SKIPIF1<0分別在SKIPIF1<0、SKIPIF1<0上,求SKIPIF1<0的最小值.(3)如圖SKIPIF1<0,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能Excel合同管理模板許可使用合同3篇
- 快遞市場(chǎng)調(diào)研租賃合同
- 團(tuán)購合作合同范本
- 礦山測(cè)量全站儀租用合同
- 節(jié)慶用品租賃終止合同
- 2025年度網(wǎng)絡(luò)安全等級(jí)保護(hù)體系建設(shè)總承包合同3篇
- 跨境電商項(xiàng)目投資承諾書范文
- 員工餐廳食品采購標(biāo)準(zhǔn)
- 電子產(chǎn)品質(zhì)量管理辦法
- 股權(quán)收購承諾書
- 高考語文模擬試題及參考答案
- 水利工程中的堤防與護(hù)岸工程考核試卷
- 培訓(xùn)班與幼兒園合作方案
- 皮膚管理培訓(xùn)資料
- 全國職業(yè)院校技能大賽賽項(xiàng)規(guī)程(中職)電子電路裝調(diào)與應(yīng)用
- 企業(yè)安全生產(chǎn)風(fēng)險(xiǎn)管控與隱患治理雙重預(yù)防機(jī)制效能評(píng)估規(guī)范DB41-T 2292-2022
- 公交公司春運(yùn)春節(jié)安全生產(chǎn)方案
- 2024年大學(xué)生就業(yè)創(chuàng)業(yè)知識(shí)競(jìng)賽題庫及答案(共200題)
- GB/T 15822.2-2024無損檢測(cè)磁粉檢測(cè)第2部分:檢測(cè)介質(zhì)
- 四川省瀘州市(2024年-2025年小學(xué)四年級(jí)語文)人教版期末考試(上學(xué)期)試卷及答案
- 換床位(2023年四川自貢中考語文試卷記敘文閱讀題及答案)
評(píng)論
0/150
提交評(píng)論