崇左幼兒師范高等專科學(xué)?!缎袠I(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
崇左幼兒師范高等??茖W(xué)?!缎袠I(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
崇左幼兒師范高等專科學(xué)?!缎袠I(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
崇左幼兒師范高等專科學(xué)?!缎袠I(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
崇左幼兒師范高等專科學(xué)?!缎袠I(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)崇左幼兒師范高等??茖W(xué)校《行業(yè)大數(shù)據(jù)系統(tǒng)開(kāi)發(fā)綜合實(shí)踐》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估是確保數(shù)據(jù)可靠性的關(guān)鍵步驟。假設(shè)要評(píng)估一個(gè)新收集的數(shù)據(jù)集的質(zhì)量,以下關(guān)于數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)的描述,正確的是:()A.只關(guān)注數(shù)據(jù)的準(zhǔn)確性,忽略完整性和一致性B.不制定明確的評(píng)估指標(biāo)和標(biāo)準(zhǔn),主觀判斷數(shù)據(jù)質(zhì)量C.綜合考慮準(zhǔn)確性、完整性、一致性、時(shí)效性、可用性等指標(biāo),制定量化的評(píng)估標(biāo)準(zhǔn)和方法,對(duì)數(shù)據(jù)質(zhì)量進(jìn)行全面評(píng)估,并提出改進(jìn)措施D.認(rèn)為數(shù)據(jù)質(zhì)量評(píng)估是一次性的工作,不需要持續(xù)監(jiān)測(cè)和改進(jìn)2、數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理包括數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化。假設(shè)要處理一個(gè)包含不同量綱特征的數(shù)據(jù)集,如身高、體重和年齡,為了使這些特征在后續(xù)分析中具有可比性。以下哪種數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化方法更適合?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max歸一化C.Decimalscaling標(biāo)準(zhǔn)化D.以上方法效果相同3、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯(cuò)誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來(lái)表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測(cè)D.聚類分析的算法有多種,如k-means聚類、層次聚類等4、假設(shè)要分析一個(gè)城市的交通流量數(shù)據(jù),以優(yōu)化交通信號(hào)燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時(shí)間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個(gè)分析角度可能是關(guān)鍵的?()A.時(shí)空分析B.基于車型的分類分析C.只關(guān)注高峰時(shí)段的分析D.隨機(jī)抽樣分析5、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的方法有很多,其中柱狀圖是一種常用的圖表類型。以下關(guān)于柱狀圖的描述中,錯(cuò)誤的是?()A.柱狀圖可以用來(lái)比較不同類別之間的數(shù)據(jù)大小B.柱狀圖可以顯示數(shù)據(jù)的分布情況和趨勢(shì)C.柱狀圖的柱子寬度應(yīng)該根據(jù)數(shù)據(jù)的數(shù)量進(jìn)行調(diào)整D.柱狀圖的柱子顏色可以根據(jù)需要進(jìn)行選擇和設(shè)置6、數(shù)據(jù)分析中的隨機(jī)森林是一種集成學(xué)習(xí)算法。假設(shè)我們使用隨機(jī)森林進(jìn)行分類任務(wù),以下哪個(gè)因素會(huì)影響隨機(jī)森林的性能?()A.決策樹(shù)的數(shù)量B.特征的隨機(jī)選擇C.樣本的隨機(jī)抽樣D.以上都是7、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是8、在對(duì)一家公司的人力資源數(shù)據(jù)進(jìn)行分析,例如員工的績(jī)效評(píng)估、工作年限、培訓(xùn)經(jīng)歷等,以找出影響員工績(jī)效的因素,并為人力資源決策提供支持。以下哪種分析方法可能有助于發(fā)現(xiàn)潛在的模式和關(guān)系?()A.主成分分析B.關(guān)聯(lián)規(guī)則挖掘C.文本挖掘D.以上都是9、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要考慮多個(gè)因素,其中數(shù)據(jù)模型是一個(gè)重要的因素。以下關(guān)于數(shù)據(jù)模型的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)模型是對(duì)數(shù)據(jù)的組織和存儲(chǔ)方式的抽象描述B.數(shù)據(jù)模型可以分為概念模型、邏輯模型和物理模型三個(gè)層次C.數(shù)據(jù)模型的設(shè)計(jì)應(yīng)該考慮數(shù)據(jù)的完整性、一致性和可擴(kuò)展性D.數(shù)據(jù)模型的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無(wú)關(guān)10、在處理數(shù)據(jù)時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行歸一化,使其值在0到1之間,以下哪個(gè)公式可以實(shí)現(xiàn)?()A.x-min(x)/(max(x)-min(x))B.(x-μ)/σC.x/sum(x)D.以上都不是11、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解模型的決策過(guò)程和結(jié)果非常重要。假設(shè)建立了一個(gè)用于信用評(píng)估的模型,需要向決策者解釋模型是如何做出信用評(píng)分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢(shì)?()A.決策樹(shù)模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機(jī)森林模型D.以上模型可解釋性相同12、數(shù)據(jù)分析中的異常值檢測(cè)對(duì)于識(shí)別數(shù)據(jù)中的異常情況非常重要。假設(shè)在一個(gè)生產(chǎn)過(guò)程的質(zhì)量控制數(shù)據(jù)集中發(fā)現(xiàn)了異常值,以下哪種方法可能有助于確定這些異常值是由隨機(jī)誤差還是系統(tǒng)故障引起的?()A.比較異常值與歷史數(shù)據(jù)的模式B.查看生產(chǎn)過(guò)程中的其他相關(guān)參數(shù)C.咨詢生產(chǎn)線上的工作人員D.以上方法都可能有幫助13、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對(duì)模型有用的特征。假設(shè)我們要對(duì)一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取圖像的顏色、形狀、紋理等特征來(lái)表示圖像B.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對(duì)圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對(duì)特征進(jìn)行預(yù)處理14、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見(jiàn)?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是15、在進(jìn)行數(shù)據(jù)挖掘任務(wù)時(shí),關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集。假設(shè)在一個(gè)超市購(gòu)物數(shù)據(jù)集中,發(fā)現(xiàn)面包、牛奶和雞蛋經(jīng)常一起被購(gòu)買(mǎi)。如果要進(jìn)一步提高關(guān)聯(lián)規(guī)則的實(shí)用性,以下哪個(gè)步驟可能是必要的?()A.增加更多商品種類到分析中B.考慮商品的促銷活動(dòng)對(duì)購(gòu)買(mǎi)行為的影響C.分析不同時(shí)間段的購(gòu)買(mǎi)模式差異D.以上步驟都可能有幫助16、當(dāng)處理高維度的數(shù)據(jù)時(shí),以下哪種方法可以用于降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是17、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法18、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究?jī)蓚€(gè)變量之間的線性關(guān)系,通常會(huì)使用哪種統(tǒng)計(jì)方法?()A.方差分析B.回歸分析C.因子分析D.聚類分析19、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程。假設(shè)一家電商企業(yè)想要通過(guò)數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶的購(gòu)買(mǎi)行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測(cè)分析20、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化21、對(duì)于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,在進(jìn)行數(shù)據(jù)分析之前,需要判斷數(shù)據(jù)是否符合正態(tài)分布。以下哪種方法常用于檢驗(yàn)數(shù)據(jù)的正態(tài)性?()A.Q-Q圖B.卡方檢驗(yàn)C.t檢驗(yàn)D.F檢驗(yàn)22、假設(shè)要分析社交媒體上的輿論趨勢(shì),以下關(guān)于輿論分析方法的描述,正確的是:()A.只統(tǒng)計(jì)帖子的數(shù)量就能了解輿論的走向B.對(duì)帖子的內(nèi)容進(jìn)行情感分析和主題提取,綜合判斷輿論趨勢(shì)C.忽略社交媒體平臺(tái)的特點(diǎn)和用戶行為,直接進(jìn)行分析D.輿論分析不需要考慮時(shí)間因素,只關(guān)注當(dāng)前的熱門(mén)話題23、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能有效描述數(shù)據(jù)特征。假設(shè)要分析一組學(xué)生考試成績(jī)的集中趨勢(shì)和離散程度,以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.僅使用平均數(shù)來(lái)描述成績(jī)的集中趨勢(shì),忽略中位數(shù)和眾數(shù)B.用方差衡量離散程度,但不考慮標(biāo)準(zhǔn)差C.同時(shí)采用平均數(shù)、中位數(shù)和眾數(shù)來(lái)描述集中趨勢(shì),并結(jié)合標(biāo)準(zhǔn)差和方差衡量離散程度D.隨意選擇一個(gè)統(tǒng)計(jì)指標(biāo),不考慮其適用場(chǎng)景和數(shù)據(jù)特點(diǎn)24、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中關(guān)聯(lián)規(guī)則挖掘是一種常用的方法。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述中,錯(cuò)誤的是?()A.關(guān)聯(lián)規(guī)則挖掘可以用來(lái)發(fā)現(xiàn)數(shù)據(jù)中不同變量之間的關(guān)聯(lián)關(guān)系B.關(guān)聯(lián)規(guī)則挖掘的結(jié)果可以用支持度和置信度來(lái)衡量C.關(guān)聯(lián)規(guī)則挖掘只適用于數(shù)值型數(shù)據(jù),對(duì)于分類型數(shù)據(jù)無(wú)法處理D.關(guān)聯(lián)規(guī)則挖掘可以幫助企業(yè)進(jìn)行商品推薦和營(yíng)銷策略制定25、對(duì)于數(shù)據(jù)分析中的分類問(wèn)題,假設(shè)要預(yù)測(cè)一個(gè)郵件是否為垃圾郵件,基于郵件的內(nèi)容、發(fā)件人、主題等特征。以下哪種分類算法在處理這種文本分類任務(wù)時(shí)可能效果較好?()A.決策樹(shù),通過(guò)一系列規(guī)則進(jìn)行分類B.支持向量機(jī),尋找最優(yōu)分類超平面C.樸素貝葉斯,基于概率進(jìn)行分類D.不進(jìn)行分類,將所有郵件視為正常郵件二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋數(shù)據(jù)倉(cāng)庫(kù)中的索引優(yōu)化策略,說(shuō)明如何選擇合適的索引來(lái)提高數(shù)據(jù)查詢性能,并舉例說(shuō)明。2、(本題5分)闡述數(shù)據(jù)分析師在處理大規(guī)模數(shù)據(jù)時(shí)應(yīng)注意的問(wèn)題,包括內(nèi)存管理、計(jì)算效率等,并介紹一些優(yōu)化技巧。3、(本題5分)簡(jiǎn)述K-Means聚類算法的優(yōu)缺點(diǎn),說(shuō)明如何選擇初始聚類中心以提高算法的性能,并舉例說(shuō)明其應(yīng)用。4、(本題5分)解釋數(shù)據(jù)分析中的因果推斷的概念和方法,說(shuō)明其與相關(guān)性分析的區(qū)別,并舉例說(shuō)明在實(shí)際問(wèn)題中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某社交電商平臺(tái)收集了用戶的分享行為、團(tuán)購(gòu)參與度、好友關(guān)系等。思考如何通過(guò)這些數(shù)據(jù)提升用戶的社交互動(dòng)和購(gòu)買(mǎi)轉(zhuǎn)化率。2、(本題5分)某在線醫(yī)療平臺(tái)的慢性病管理數(shù)據(jù)包含患者信息、疾病類型、治療周期、復(fù)診情況等。分析不同慢性病類型的治療周期和復(fù)診規(guī)律。3、(本題5分)某房地產(chǎn)公司積累了樓盤(pán)銷售數(shù)據(jù)、客戶需求、市場(chǎng)趨勢(shì)等信息。預(yù)測(cè)房地產(chǎn)市場(chǎng)走向,為樓盤(pán)開(kāi)發(fā)和銷售策略提供決策支持。4、(本題5分)某在線鮮花配送平臺(tái)積累了配送數(shù)據(jù)、鮮花保鮮情況、客戶投訴等。改進(jìn)配送服務(wù)和鮮花保鮮措施,提升客戶體驗(yàn)。5、(本題5分)一家快遞公司的國(guó)際業(yè)務(wù)記錄了包裹的運(yùn)輸數(shù)據(jù),包括出發(fā)國(guó)家、目的國(guó)家、貨物重量、運(yùn)輸方式、清關(guān)時(shí)間等。研究不同國(guó)家之間的運(yùn)輸方式選擇和清關(guān)時(shí)間差異。四、論述題(本大題共3個(gè)小題,共30分)1、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論