




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper11059
DesignofPartialPopulationExperimentswithanApplicationtoSpilloversinTaxCompliance
GuillermoCruces
DarioTortarolo
GonzaloVazquez–Bare
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentResearchGroupFebruary2025
ReproducibleResearchRepository
Averifiedreproducibilitypackageforthispaperisavailableat
,click
here
fordirectaccess.
PolicyResearchWorkingPaper11059
Abstract
Thispaperdevelopsaframeworktoanalyzepartialpopula–tionexperiments,ageneralizationoftheclusterexperimentaldesignwhereclustersareassignedtodifferenttreatmentintensities.Theframeworkallowsforheterogeneityinclus–tersizesandoutcomedistributions.Thepaperstudiesthelarge–samplebehaviorofOLSestimatorsandcluster–ro–bustvarianceestimatorsandshowsthat(i)ignoringclusterheterogeneitymayresultinseverelyunderpoweredexper–imentsand(ii)thecluster–robustvarianceestimatormaybeupward–biasedwhenclustersareheterogeneous.Thepaperderivesformulasforpower,minimumdetectable
effects,andoptimalclusterassignmentprobabilities.Alltheresultsapplytoclusterexperiments,aparticularcaseoftheframework.ThepapersetsupapotentialoutcomesframeworktointerprettheOLSestimandsascausaleffects.Itimplementsthemethodsinalarge–scaleexperimenttoestimatethedirectandspillovereffectsofacommunicationcampaignonpropertytaxcompliance.Theanalysisrevealsanincreaseintaxcomplianceamongindividualsdirectlytargetedwiththemailing,aswellascompliancespilloversonuntreatedindividualsinclusterswithahighproportionoftreatedtaxpayers.
ThispaperisaproductoftheDevelopmentResearchGroup,DevelopmentEconomic.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthors
maybecontactedatdtortarolo@.Averifiedreproducibilitypackageforthispaperisavailableat
http://
,click
here
fordirectaccess.
Y
C
I
A
E
RES
L
O
P
H
C
R
S
TRANSPARENT
P
E
R
W
O
R
K
I
ANALYSIS
A
NGP
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
DesignofPartialPopulationExperiments
withanApplicationtoSpilloversinTaxComplianc
e*
GuillermoCruces,U.ofNottingham&CONICET-CEDLAS-UNLP
DarioTortarolo,WorldBankDECRG
GonzaloVazquez-Bare,UCSantaBarbara
JELCODES:C01,C93,H71,H26,H21,O23.
KEYWORDS:partialpopulationexperiments,spillovers,randomizedcontrolledtrials,clusterex-periments,two-stagedesigns,propertytax,taxcompliance.
*WethankYuehaoBai,YoussefBenzarti,AugustinBergeron,JavierBirchenall,MatiasCattaneo,MaxFarrell,KelseyJack,HeatherRoyer,DougSteigerwaldandAlisaTazhitdinovaforvaluablediscussionsandsuggestions,andseminarpartici-pantsatthe2021NationalTaxAssociationconference,IFS,CEDLAS-UNLP,andthe2022AdvanceswithFieldExperimentsconference.WethankJulianAmendolaggineandJuanLuisSchiavonifortheirinvaluablesupportthroughouttheproject.WethankBrunoCrponandRolandRathelotfortheirhelpinobtainingtheirdata.Theviewsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelop-ment/WorldBankanditsaf?liatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.Correspondingauthor:DarioTortarolo,E-mail:
dtortarolo@.
ThisprojectwasreviewedandapprovedinadvancebytheInstitutionalReviewBoardattheUniversityofNottingham.ThedesignforthisexperimentwaspreregisteredintheAEARCTRegistry(RCTID:AEARCTR-0006569).Allremainingerrorsareourown.
2
1Introduction
Randomizedcontrolledtrials(RCTs)areextensivelyusedineconomics.Alargefractionoftheseexperi-mentsarebasedontheassumptionthatthetreatmentassignmentofoneunitorsubjectdoesnotin?uencetheoutcomesofothers.Theassumptionofnointerference,however,maybeviolatedinmanysettings.Insuchcases,identifyingandmeasuringspilloversbetweenunitsiscrucialforunderstandingthenatureandmagnitudeofinteractionsbetweensubjects,aswellasforaccuratelyassessingthedirectimpactofthetreatment.
Whiletheearlyexperimentalliteratureconsideredtheimpactonuntreatedunitsinanex-postmanner(e.g.
MiguelandKremer,
2004
),?eldexperimentsincorporatingspillovereffectsintotheirdesignhavegainedtractioninappliedresearch.Insettingswhereunitsaregroupedintoindependentclusters,suchasschools,villages,or?rms,acommondesignisthepartialpopulationdesign.Partialpopulationdesignsareageneralizationoftheclustereddesignwhereinclustersassignedtodifferenttreatmentintensitiesorsaturationsarecomparedtopurecontrolclusterswithnotreatedunits(
Mof?t,
2001;
Du?oandSaez,
2003;
HudgensandHalloran,
2008;
HiranoandHahn,
2010;
Bairdetal.,
2018
).Thevariationintreatmentintensityallowsresearcherstodisentanglethedirectandindirecteffectsofatreatment.Inthispaper,weprovideaframeworktoanalyzethistypeofexperimentwhenclustersareheterogeneous.
Weconsidertwodimensionsofclusterheterogeneitythathaveimportantpracticalimplications:het-erogeneityinclustersizesandheterogeneityinoutcomedistributionsacrossclusters(distributionalhet-erogeneity)
1.
Whenanalyzinganexperimentwithheterogeneousclusters,correctlyaccountingforthisheterogeneityiscrucialforseveralreasons.Ontheonehand,varianceformulashavetobeadjustedac-cordingly,andfailingtodosomayresultinseverelyunderpoweredexperiments.Ontheotherhand,clusterheterogeneitycanaffecttheaccuracyofthelargesamplenormalapproximation,andinferencebasedonthisapproximationcanbemisleadingwhenclustersareveryheterogeneous(
Carter,Schnepel
andSteigerwald,
2017;
Djogbenou,MacKinnonand?rregaardNielsen,
2019;
HansenandLee,
2019;
SasakiandWang,
2022;
Chiang,SasakiandWang,
2023
).
Withthesechallengesinmind,ourpaperprovides?vecontributions.First,inTheorem
1
,wederiveanasymptoticdistributionalapproximationforOLSregressionestimatorsinasettingwithbetween-clusterheterogeneity.Weconsideradouble-arrayasymptoticsettingwhereclustersizesareallowed,butnotre-quired,togrowwiththesamplesize.WeprovideconditionsunderwhichOLSestimatorsareconsistentforcluster-size-weightedaveragesofwithin-clusterdifferencesinmeans,andareasymptoticallynormal.Wealsoshowthat,inthepresenceofdistributionalheterogeneity,theusualcluster-robustvarianceestima-torisgenerallyupward-biased,andhenceinferencebasedonthisestimatorisconservative(Proposition
1
).Whilesimilarresultshavebeenobtainedindesign-basedsettingswithnon-randompotentialoutcomes(seee.g.
HudgensandHalloran,
2008;
BasseandFeller,
2018;
Abadieetal.,
2022;
Jiang,ImaiandMalani,
1Wenotethatourframeworkallowsforgeneralformsofbetween-clusterheterogeneity,butassumesthatoutcomesareiden-ticallydistributedwithineachcluster.Thegeneralizationofourresultstothecasewhereoutcomedistributionsareheteroge-neouswithinaclusterisleftforfutureresearch.
3
2023
),toourknowledgewearethe?rsttoshowthisresultinasuperpopulationsettingunderdistributionalheterogeneity.
Oursecondcontributionistoderiveexplicit,closed-formformulastoconductpowerandminimumdetectableeffect(MDE)calculationsunderthetwoaforementionedsourcesofclusterheterogeneity.Wethenconsideranintermediatesettingwhereclustersdifferinsizebutnotintheiroutcomedistributions,whichsimpli?espowerandminimumdetectableeffectscalculationsandcanbeappliedmoreeasilywhenbaselineoutcomedataisnotavailable.Weshowhowourformulasgeneralizethoseavailableintheexistingmethodologicalliteratureonexperimentaldesign(
Du?o,GlennersterandKremer,
2007;
Hirano
andHahn,
2010;
Bairdetal.,
2018
)byallowingformultipletreatmentintensities,clusterheterogeneity,heteroskedasticityandgeneralformsofintraclustercorrelationinoutcomesandtreatments.
Ourthirdcontributionistoderiveoptimalassignmentprobabilitiesdeterminingtheproportionofclus-terstobeassignedtoeachtreatmentsaturation(Theorem
2
).Weprovideatractable,closed-formsolutiontotheoptimalchoiceproblemofminimizingaweightedaverageofestimators’variances.Wealsodiscusshowalternativeoptimalitycriteriamaybeusedincombinationwithourvarianceformulasusingnumericalmethods.
Ourfourthcontributionistosetupapotentialoutcomesframeworkwithwithin-clusterspillovers,heterogeneoustreatmenteffects,andheterogeneousclusters.Weusethisframeworktoprovidesuf?cientconditionsforOLSestimandstorecovercausaldirectandspillovereffects.
Fifth,basedonourframework,wedesignedandconductedalarge-scale?eldexperimenttoestimatedirectandspillovereffectsofarandomizedcommunicationcampaignonpropertytaxcomplianceinAr-gentina.Ourexperimentsentpersonalizedletterstorandomlyselecteddwellingswithremindersabouttaxesdue,informationaboutthestatusoftheaccount,duedates,pastduedebt,andpaymentmethods.Whilethereisampleevidenceontheeffectoftaxremindersoncomplianceandcollection(
Antinyanand
Asatryan,
2024
),ourgoalwasto?ndevidenceonrelativelyelusivespillovereffectsfrominformationcampaignsontaxcollection.Wedesignedtheexperimentbasedonourmethodologicalresultstocapturespillovereffectsofourmailingsonneighborswholiveinthesamestreetblocksoftreatedindividualsbutwhodidnotreceivealetter.Ourresultsrevealhigherpaymentratesfortreatedindividuals,butalsofortheiruntreatedneighborsinthesamestreetblock,comparedtoaccountsinpurecontrolblockswherenoonereceivedtheletter.Spillovereffectsarelowerinmagnitudebutstillsubstantialandpreciselyestimatedinhigh-saturationstreetblocks,especiallywhenaccountingforexpected(pre-registered)heterogeneityinpastcompliance:paymentratesofuntreatedaccountsinhighsaturationblockswithabovemedianpastcomplianceincreasedby2.6percentagepoints,comparedtodirecteffectsofabout5.1percentagepoints.
Comparisonwithcurrentliterature.Ourpapercontributestoagrowingliteratureonexperimentaldesign(
Du?o,GlennersterandKremer,
2007;
BruhnandMcKenzie,
2009;
Bugni,CanayandShaikh,
2018,
2019;
Bai,
2022
)andinparticulartotheliteratureondesignandanalysisofexperimentsunder
4
spilloversorinterference(
HiranoandHahn,
2010;
Athey,EcklesandImbens,
2018;
Bairdetal.,
2018;
Basse,FellerandToulis,
2019;
Jiang,ImaiandMalani,
2023;
Puelzetal.,
2022;
Viviano,
2024;
Leung,
2022;
Liu,
2023
).Morespeci?cally,ourresultsgeneralizethoseof
HiranoandHahn
(2010
),
Hudgens
andHalloran
(2008
)and
Bairdetal.
(2018
)byallowingforclusterheterogeneity,heteroskedasticity,generaltreatmentassignmentmechanismsandwithin-groupcorrelationstructuresandalternativecriteriaforoptimaltreatmentassignment.
Inrelatedwork,
Athey,EcklesandImbens
(2018
),
Basse,FellerandToulis
(2019
)and
Puelzetal.
(2022
)deriverandomizationinferencetestsforageneralclassofnullhypothesesunderinterference.Acloselyrelatedstudyis
Jiang,ImaiandMalani
(2023
),whoanalyzetwo-stagecompletelyrandomizedexperimentsandproviderandomization-basedvarianceestimatorsandsamplesizeformulas.Ourre-sultscomplementthisliteraturebyconsideringdifferentestimands,differentassignmentmechanismsandbyconductingsuper-population-basedlarge-sample(insteadofdesign-based)inferenceinadoublear-rayasymptoticframework.Ourapproachallowsustodeterminetheroleofclusterheterogeneityintheasymptoticbehaviorofthetreatmenteffectestimators.
Ourpaperisalsorelatedtotheliteratureoninferenceinclusteredexperiments,whichareaparticularcaseofpartialpopulationexperimentswithonlytwosaturationsandnowithin-clustertreatmentvariation.
Bugnietal.
(2023
)studyinferenceinclusteredexperimentswithnon-ignorableclustersizesandderivevarianceestimatorsandvalidinferenceproceduresinasetupwithrandomclustersizes.WefurtherdiscusstherelationshipbetweenourresultsandthatpaperinSection
3.5.
Wealsocontributetoalargeempiricalliteratureonpropertytaxesandasmallbutgrowingempiricalliteratureonspillovereffectsintaxcompliance.Onpropertytaxes,recentcontributionsinclude
Brock-
meyeretal.
(2020
)studyofMexicoCity,
Bergeron,TourekandWeigel
(2024
)and
Weigel
(2020
)fortheDemocraticRepublicofCongo,and
Krause
(2020
)forHaiti,amongothers.Thelattertwoareran-domizedcontrolledtrials,andinbothcases,theauthorsaddressthepresenceofspillovers,butinex-postanalysisratherthanintheexperimentaldesigns.Theeffectofsocialinteractionsintaxcomplianceinter-ventionshasremainedarelativelyelusiveissueinthebroaderexperimentalcomplianceliterature.Somenotableexceptionsare
Pomeranz
(2015
),whodetectsenforcementspilloversuptheVATchaininChilean?rms,
Drago,MengelandTraxler
(2020
)whostudyenforcementspilloversofTVlicensinginspectionsonuntreatedhouseholdsinAustria,and
Boningetal.
(2020
)whoanalyzedirectandnetworkeffectsfromin-personvisitsbyrevenueof?cersonvisitedandnon-visited?rmsintheUnitedStates(seethereviewin
PomeranzandVila-Belda,
2019
,formorestudiescoveringspillovereffects).InArgentina,arecentstudyby
Carrillo,CastroandScartascini
(2021
)?ndsneighborhoodspillovereffectsfromaprogramthatrandomlyawarded400taxpayerswiththerepairofasidewalk.Whereasthesepapers?ndspillovereffectsintaxcompliance,theiroriginalexperimentswerenotdesignedtocapturetheseeffects.Webuildonthesepioneeringworkswithaninterventiondesignedwiththepurposeofcapturingspillovers.
Thepaperisorganizedasfollows.Section
2
illustratesthepracticalimportanceofclusterheterogeneitywhenconductingpowercalculations.InSection
3
,wesetupourframeworkandderivethemainresults.In
5
Section
4
,weimplementourmethodsinalarge-scalerandomizedcommunicationcampaign,wedescribetheadministrativedatausedintheanalysis,theempiricalstrategy,andevidenceofdirectandspillovereffects.Section
5
providessomepracticalrecommendationsfordesigningandanalyzingpartialpopulationexperiments.Section
6
concludes.
2WhyisClusterHeterogeneityImportant?
Weconsiderapopulationwhereunitsaregroupedintomutuallyexclusiveandindependentclusters.Com-monexamplesofthistypeofclusteringarestudentsinschools(
MiguelandKremer,
2004;
Beuermann
etal.,
2015
),familymembersinhouseholds(
Barrera-Osorioetal.,
2011;
FoosanddeRooij,
2017
),jobseekersinlocallabormarkets(
Crponetal.,
2013
),employeesin?rmsororganizations(
Du?oandSaez,
2003
),orhouseholdsinneighborhoods,villagesorothergeographicadministrativeunits(
Angelucciand
DeGiorgi,
2009;
IchinoandSch…undeln,
2012;
HaushoferandShapiro,
2016;
GinandMansuri,
2018
).Inourapplication,alocalpropertytaxreminderinformationcampaign,thepopulationofinterestconsistsoftaxpayersinresidentialblocks.Withinthispopulation,westudyanexperimentaldesignwheretreatmentassignmentscanvarybothbetweenandwithinclusters.
Figure
1
showsthedistributionofclustersizesinsixpartialpopulationexperiments,includingouranalysissampleand?vepublishedpapers(
Crponetal.,
2013;
GinandMansuri,
2018;
Haushoferand
Shapiro,
2016;
IchinoandSch…undeln,
2012;
Imai,JiangandMalani,
2021
).The?gurerevealssubstantialvariationinclustersizes.Whenclustersizesareheterogeneous,itislikelythatthedistributionofoutcomeswillvaryacrossclustersaswell.Forinstance,onemayexpectthemeanandthevarianceoftheoutcometobedifferentinlargeclusterscomparedtosmallclusters.Werefertothevariationinoutcomedistributionsacrossclustersasdistributionalheterogeneity.
Intuitively,withheterogeneousclusters,thevarianceofanestimatorofinterest,suchasadifference
inmeansbetweenunitsintreatedanduntreatedclusters(wede?netheestimatorsofinterestpreciselyinthenextsection),canbedecomposedintofourparts:
V[]≈varianceunderuncorrelatedobservations(1)
+clusteringwithequally-sizedclusters(2)
+clustersizeheterogeneity(3)
+clusterdistributionalheterogeneity(4)
The?rsttermisthevariancethatwouldbeobtainedifobservationswereuncorrelatedwithinclusters.Thesecondtermisanadjustmentfactorthataccountsforthewithin-clustercorrelation,oftenknownasthe“designeffect”orthe“Moultonfactor”(after
Moulton,
1986
)thatdependsontheaverageclustersize.Theterminthethirdlinerepresentstheadditionalvariationduetotheheterogeneityinclustersizes,
6
whichintuitivelyaccountsforthevarianceofclustersizes(
Moulton,
1986
,alsoderivesthisadjustmentforarandomeffectsmodel).Finally,thelastcomponentaccountsforthebetween-clusterheterogeneityinoutcomedistributions.Whiletheneedtoaccountforwithin-clustercorrelations(lines(1)and(2))iswell-understoodfordesigningandanalyzingclusteredexperiments,theadjustmenttermsthataccountforclusterheterogeneityaretypicallyassumedawaybytheliteratureonexperimentaldesign(e.g.
Bloom,
2005;
Du?o,GlennersterandKremer,
2007;
HiranoandHahn,
2010;
Bairdetal.,
2018
).
Tonumericallyillustratetheimportanceofappropriatelyaccountingforclusterheterogeneityinthisdesign,weconsiderthesimplesettingofaclusterRCT(whichisaparticularcaseofapartialpopulationexperiment)where“afew”clustersare“l(fā)arge”.Speci?cally,weconsiderasampleof200clusters,indexedbyg=1,...,200,eachhavingsizeng.The?rst10clusterscontain100units,ng=100,andtheremaining190clusterscontain25unitseach,ng=25(thesevaluesarechosentomatchthemedianvaluesintheliteratureinFigure
1
).Weassumethetreatmenthasnoeffect,andtheoutcomeofuniti=1,...,nginclustergisgivenbyarandomeffectsmodel:Yig=αg+νg+ωig,νg,1/2),ωigN(0,1/2)withνgindependentofωigandwhereαgisa(non-random)interceptwithαg=0ifng=25andαg=1ifng=100.ThismodelimpliesthattheaverageoutcomeisE[Yig]=1inlargeclustersandE[Yig]=0insmallclusters.Inaddition,V[Yig]=1andthewithin-clustercorrelationbetweenoutcomesiscor(Yig,Yjg)=0.5.
Figure
2
plotsthreepowerfunctionsforthedifferenceinmeansbetweentreatedanduntreatedclustersthataresearchermayconsiderwhendesigningthisexperiment.Theshort-dashedcurverepresentsthepowerfunctionthatisobtainedwhenignoringbothsourcesofheterogeneity,thatis,consideringonlythetermsinlines(1)and(2)ofthevarianceformula.Usingthisformula,theMDEat80%power,giventhissamplesize,is0.29standarddeviations.However,whenaccountingforthevariationinclustersizes,thecorrespondingpowerfunctionisrepresentedbythelong-dashedcurve.Accordingtothiscurve,thepowertodetectaneffectof0.29isnot80%but69%,sotheexperimentisunderpowered.Furthermore,thetruepowerfunctionthataccountsforbothsourcesofheterogeneity(sizesandoutcomedistributions)isrepresentedbythesolidcurve.Thiscurveshowsthatthetruepowertodetectaneffectof0.29inthissettingwithheterogeneousclustersis48%,signi?cantlybelowthedesiredpowerof80%.Thisnumericalexerciseshowshowignoringheterogeneitymayresultinseverelyunderpoweredexperiments.WeprovidefurtherexamplesoftheimportanceofaccountingforheterogeneityinSection
4.
3AnalysisofPartialPopulationExperiments
3.1Setup
Weconsiderasampleofobservations(units)thataredividedintomutuallyindependentclustersg=
1,...,G,whereeachclustergcontainsngobservationsi=1,...,ngandthetotalsamplesizeisn=
7
Σg.Weviewclustersizesasnon-random(see
Bugnietal.,
2023;
SasakiandWang,
2022
,foranalternativesamplingapproachwhereclustersizesarerandom).Inapartialpopulationexperiment,clustersarerandomlydividedintocategoriesorsaturationsdenotedbyTg∈{0,1,2,...,M},wherebyconventionTg=0denotesapurecontrolcluster(i.e.aclusterwherenounitistreated).LetP[Tg=t]=qt∈(0,1)denotetheprobabilitythatclustergisassignedtosaturationt.Withineachcluster,abinarytreatmentDigisassignedtounitswithprobabilityP[Dig=1|Tg=t]whereP[Dig=0|Tg=0]=1
.2
WeletDg=(D1g,D2g,...,Dngg)9bethevectorofunit-leveltreatmentassignmentsinclusterg,D=
(D,...,D)9andT=(T1,...,TG)9.Figure
A.3
providesanexampleofapartialpopulationdesign
withfoursaturations.NoticethatbothstandardRCTswithindependentobservationsandclusterRCTsareparticularcasesofpartialpopulationexperiments,aswefurtherillustrateinSection
3.5.
TheobservedoutcomeofinterestforunitiinclustergisdenotedbyYigandweletYg=(Y1g,...,Yngg)9bethevectorofobservedoutcomesinclusterg.Inpartialpopulationexperiments,theestimandsofin-terestaretypicallycomparisonsofaverageoutcomesbetweentreatedoruntreatedunitsintreatedclusterstopurecontrolunits,E[Yig|Dig=d,Tg=t]-E[Yig|Tg=0],pooledacrossclusters.Inthe?rstpartofthepaper,wetaketheseestimandsasgivensincetheyarethemostcommonlyanalyzedestimandsintheempiricalliterature.InSection
3.6
,wesetupapotentialoutcomesframeworktorigorouslyjustifythecausalinterpretationoftheseestimands.Letμg(d,t)=E[Yig|Dig=d,Tg=t]betheconditionalexpectationoftheoutcomeinclusterggivenassignment(d,t).Weconsiderthefollowingsamplemeansestimators:
where1=1(Tg=t),N=Σi1(Dig=d)andY-gd=ΣiYig1(Dig=d)/N,de?nedwhenever
N>0.TheseestimatorsarecommonlycomputedbyrunninganOLSregressionoftheoutcomeon
afullsetofindicators(1(Dig=d,Tg=t))(d,t),withoutanintercept.Thus,inwhatfollows,werefertotheseestimatorsasOLSestimators.Ourparameterofinterestisthevectorofcluster-size-weightedaverageofcluster-speci?cdifferencesinmeans:
Wenotethatourframeworkcaneasilyaccommodateotherparameterswithdifferentweightingschemes,
suchasthesimpleaverageacrossclustersΣg(d,t)-μg(0,0))/G.
2Inpractice,somedesiredsaturationsmaynotcoincidewiththeobservedproportionoftreatedunitsforsomeclustersizes.Forinstance,ifP[Dig=1|Tg=t]=0.5butngisodd,theobservedproportionoftreatedcannotbeexactly0.5.Appendix
A.4
proposesanassignmentmechanismthatensuresthattheexpectedproportionoftreatedcoincideswithP[Dig=1|Tg=t].
8
3.2AsymptoticBehaviorofOLSEstimators
WenowstudytheasymptoticdistributionoftheOLSestimatorsde?nedinEquation(
5
)andfunctionsthereof.Weconsideradouble-arrayasymptoticsettingwheretheclustersizesareallowed,butnotre-quired,togrowwiththesamplesize.Thistypeofapproximationismoreappropriatethantheboundedclustersizeapproachwhengroupscanbelargeandheterogeneousinsize,butwenotethatthesettingswithboundedclustersizesand/orequally-sizedclustersarenestedasparticularcasesofouranalysis
.3
Weconsiderthefollowingsamplingscheme.
Assumption1(Sampling)
(i)(Yg,,Dg,,Tgg.
(ii)Foreachgandforalli=1,...,ng,E[Yi|Dig=d,Tg=t]=μ(d,t)forall(d,t)andforalllsuchthatE[|Yig|l|Dig=d,Tg=t]<∞.
(iii)Foreachgandforalli=1,...,ng,P[Dig=d|Tg=t]=pg(d|t)andP[Dig=d,Djg=d,|Tg=
t]=pg(d,d,|t)foralld,d,andt.
Part(i)statesthatclustersaremutuallyindependent,astandardassumptionintheclusteringliterature.
Noticethatwedonotrequireclusterstobeidenticallydistributed,sooutcomedistributionscanbehet-erogeneousacrossclusters.Part(ii)statesthataverageconditionaloutcomesarethesameforallunits
inthesamecluster.Inwhatfollowswede?neμ(d,t)=μg(d,t)forl=1toreducenotation.Part
(iii)statesthattheunit-leveltreatmentprobabilitiesarethesamewithinacluster.Notethatwithin-clusterassignm
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 項(xiàng)目團(tuán)隊(duì)說(shuō)明與管理
- 防訊安全教育:防溺水
- 項(xiàng)目駐場(chǎng)述職報(bào)告
- 語(yǔ)文-西安市新城區(qū)小升初語(yǔ)文考試試卷模擬卷
- 智慧城市管理:建設(shè)智慧的未來(lái)城市
- (高清版)DB12 046.07-2011 產(chǎn)品單位產(chǎn)量綜合能耗計(jì)算方法及限額 第7部分:煉鐵
- 預(yù)防下肢深靜脈血栓指南解讀
- 零食預(yù)防疾病教育
- 蘇教版三年級(jí)上冊(cè)語(yǔ)文五單元知識(shí)點(diǎn)總結(jié)
- 四年級(jí)數(shù)學(xué)(四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)與答案匯編
- 校本課程定稿《趣味實(shí)驗(yàn)》
- 新能源汽車構(gòu)造(上)
- 小班語(yǔ)言《雞媽媽的翅膀》課件
- 早產(chǎn)兒口腔運(yùn)動(dòng)干預(yù)治療
- 嶺南版二年級(jí)美術(shù)上冊(cè)期末試題B
- 實(shí)施流程及控制要點(diǎn)講義
- 心理健康教育與心理輔導(dǎo)
- 中國(guó)智造3C家電行業(yè)白皮書
- 急診室縮短急性腦卒中患者DNT時(shí)間醫(yī)院持續(xù)質(zhì)量改進(jìn)PDCA項(xiàng)目匯報(bào)書
- 第四單元神州音韻(四)《在那遙遠(yuǎn)的地方》教學(xué)課件人教版八年級(jí)初中音樂(lè)下冊(cè)
- 計(jì)算機(jī)體系結(jié)構(gòu)(計(jì)算機(jī)組成原理)教案
評(píng)論
0/150
提交評(píng)論