黑龍江省大興安嶺市漠河縣一中2020學(xué)年高中數(shù)學(xué) 第一章 算法初步 1.3.1 算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)案 新人教A版必修3(通用)_第1頁
黑龍江省大興安嶺市漠河縣一中2020學(xué)年高中數(shù)學(xué) 第一章 算法初步 1.3.1 算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)案 新人教A版必修3(通用)_第2頁
黑龍江省大興安嶺市漠河縣一中2020學(xué)年高中數(shù)學(xué) 第一章 算法初步 1.3.1 算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)案 新人教A版必修3(通用)_第3頁
黑龍江省大興安嶺市漠河縣一中2020學(xué)年高中數(shù)學(xué) 第一章 算法初步 1.3.1 算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)案 新人教A版必修3(通用)_第4頁
黑龍江省大興安嶺市漠河縣一中2020學(xué)年高中數(shù)學(xué) 第一章 算法初步 1.3.1 算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)學(xué)案 新人教A版必修3(通用)_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1.3.1算法案例 輾轉(zhuǎn)相除法與更相減損術(shù)授課日期: 姓名: 班級(jí): 學(xué)習(xí)目標(biāo)知識(shí)與技能1.理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析。2.基本能根據(jù)算法語句與程序框圖的知識(shí)設(shè)計(jì)完整的程序框圖并寫出算法程序。過程與方法在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過程中對(duì)比我們常見的約分求公因式的方法,比較它們?cè)谒惴ㄉ系膮^(qū)別,并從程序的學(xué)習(xí)中體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),。情態(tài)與價(jià)值通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問題的過程中培養(yǎng)理性的精神和動(dòng)手實(shí)踐的能力。學(xué)習(xí)重難點(diǎn)重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求

2、最大公約數(shù)的方法。難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語言。使用說明及學(xué)法指導(dǎo):1、先閱讀教材3437頁認(rèn)真思考,在理解最大公約數(shù)的基礎(chǔ)上去發(fā)現(xiàn)輾轉(zhuǎn)相除法與更相減損術(shù)中的數(shù)學(xué)規(guī)律,并能模仿已經(jīng)學(xué)過的程序框圖與算法語句設(shè)計(jì)出輾轉(zhuǎn)相除法與更相減損術(shù)的程序框圖與算法程序。2、把學(xué)案中自己易忘、易出錯(cuò)的知識(shí)點(diǎn)和疑難問題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班至少完成A.B類題。平行班的A級(jí)學(xué)生完成80以上B完成7080C力爭(zhēng)完成60以上。知識(shí)鏈接:研究一個(gè)實(shí)際問題的算法,主要從算法步驟、程序框圖和編

3、寫程序三方面展開.在程序框圖中算法的基本邏輯結(jié)構(gòu)有哪三種?在程序設(shè)計(jì)中基本的算法語句有哪五種?學(xué)習(xí)過程:A問題1.在初中,我們已經(jīng)學(xué)過求最大公約數(shù)的知識(shí),你能求出18與30的公約數(shù)嗎?A問題2.接著進(jìn)一步研究問題,我們都是利用找公約數(shù)的方法來求最大公約數(shù),如果公約數(shù)比較大而且根據(jù)我們的觀察又不能得到一些公約數(shù),我們又應(yīng)該怎樣求它們的最大公約數(shù)?比如求8251與6105的最大公約數(shù)?這就是我們這一堂課所要探討的內(nèi)容。B問題3.例1 求兩個(gè)正數(shù)8251和6105的最大公約數(shù)。(分析:8251與6105兩數(shù)都比較大,而且沒有明顯的公約數(shù),如能把它們都變小一點(diǎn),根據(jù)已有的知識(shí)即可求出最大公約數(shù))以上我

4、們求最大公約數(shù)的方法就是 。也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的。利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商q0和一個(gè)余數(shù)r0;第二步:若r00,則n為m,n的最大公約數(shù);若r00,則用除數(shù)n除以余數(shù)r0得到一個(gè)商q1和一個(gè)余數(shù)r1;第三步:若r10,則r1為m,n的最大公約數(shù);若r10,則用除數(shù)r0除以余數(shù)r1得到一個(gè)商q2和一個(gè)余數(shù)r2;依次計(jì)算直至rn0,此時(shí)所得到的rn1即為所求的最大公約數(shù)。練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53)B問題4:該算法的程序框圖如何表示?B問題5.更相減損術(shù)我

5、國早期也有解決求最大公約數(shù)問題的算法,就是更相減損術(shù)。更相減損術(shù)求最大公約數(shù)的步驟如下:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯出來為:第一步:任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。第二步:以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2 用更相減損術(shù)求98與63的最大公約數(shù).練習(xí):用更相減損術(shù)求兩個(gè)正數(shù)84與72的最大公約數(shù)。(答案:12)B問題6.比較輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別(1)都是求最大公約數(shù)的方法,計(jì)

6、算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到C問題7.更相減損術(shù)計(jì)算的程序框圖及程序課堂測(cè)試A1.用輾轉(zhuǎn)相除法求下列各組數(shù)的最大公約數(shù).(1)225;135 (2)98;196 (3)72;168 (4)153;119A2.分別用輾轉(zhuǎn)相除法和更相減損術(shù)求378與90的最大公約數(shù)A3.求123和48的最大公約數(shù)C4.求三個(gè)數(shù)1734,816,1343的最大公約數(shù)課堂小結(jié)與評(píng)價(jià)學(xué)后反思07:算法案例 輾轉(zhuǎn)相

7、除法與更相減損術(shù)B問題3.例1 解:8251610512146顯然8251的最大公約數(shù)也必是2146的約數(shù),同樣6105與2146的公約數(shù)也必是8251的約數(shù),所以8251與6105的最大公約數(shù)也是6105與2146的最大公約數(shù)。6105214621813214618131333181333351483331482371483740則37為8251與6105的最大公約數(shù)。以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法。練習(xí):利用輾轉(zhuǎn)相除法求兩數(shù)4081與20723的最大公約數(shù)(答案:53)例2 用更相減損術(shù)求98與63的最大公約數(shù).解:由于63不是偶數(shù),把98和63以大數(shù)減小數(shù),并輾轉(zhuǎn)相減,即:9863356335283528728721217141477所以,98與63的最大公約數(shù)是7。練習(xí):用更相減損術(shù)求兩個(gè)正數(shù)84與72的最大公約數(shù)。(答案:12)C問題7.更相減損術(shù)計(jì)算的程序框圖及程序程序:INPUT “m=”;mINPUT “n=”;nIF mn THEN x=mm=nn=xEND IFr=m MOD nWHIL

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論