2017-2018版高中數(shù)學(xué)第二章空間向量與立體幾何5夾角的計(jì)算學(xué)案北師大版選修2_第1頁(yè)
2017-2018版高中數(shù)學(xué)第二章空間向量與立體幾何5夾角的計(jì)算學(xué)案北師大版選修2_第2頁(yè)
2017-2018版高中數(shù)學(xué)第二章空間向量與立體幾何5夾角的計(jì)算學(xué)案北師大版選修2_第3頁(yè)
2017-2018版高中數(shù)學(xué)第二章空間向量與立體幾何5夾角的計(jì)算學(xué)案北師大版選修2_第4頁(yè)
2017-2018版高中數(shù)學(xué)第二章空間向量與立體幾何5夾角的計(jì)算學(xué)案北師大版選修2_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、5 夾角的計(jì)算學(xué)習(xí)目標(biāo)1.理解直線間的夾角、平面間的夾角、直線與平面的夾角的概念.2.掌握直線間的夾角、平面間的夾角、直線與平面的夾角的求解.知識(shí)點(diǎn)一直線間的夾角思考1設(shè)a,b分別是空間兩條直線l1,l2的方向向量,則l1與l2的夾角大小一定為a,b嗎?思考2當(dāng)兩條直線平行時(shí),它們的夾角是多少?梳理(1)共面直線的夾角當(dāng)兩條直線l1與l2共面時(shí),我們把兩條直線交角中,范圍在0,內(nèi)的角叫作兩直線的夾角,如圖所示,當(dāng)兩條直線垂直時(shí),夾角為_(kāi).(2)異面直線的夾角當(dāng)直線l1與l2是異面直線時(shí),在直線l1上任取一點(diǎn)A作ABl2,我們把直線l1和直線AB的夾角叫作異面直線l1與l2的夾角,如圖所示.兩條

2、異面直線的夾角的范圍為_(kāi),當(dāng)夾角為時(shí),稱這兩條直線異面_.綜上,空間兩條直線的夾角的范圍是_.(3)直線的方向向量的夾角與兩直線夾角的關(guān)系空間兩條直線的夾角可由它們的方向向量的夾角來(lái)確定.已知直線l1與l2的方向向量分別為s1,s2.當(dāng)0s1,s2時(shí),直線l1與l2的夾角等于_;當(dāng)s1,s2時(shí),直線l1與l2的夾角等于_.知識(shí)點(diǎn)二平面間的夾角思考若平面1與平面2平行,則它們的夾角是多少?梳理(1)平面間夾角的概念如圖,平面1與2相交于直線l,點(diǎn)R為直線l上任意一點(diǎn),過(guò)點(diǎn)R,在平面1上作直線l1l,在平面2上作直線l2l,則l1l2R.我們把直線l1和l2的夾角叫作平面1與2的夾角.由平面間夾角

3、的概念可知,空間中兩個(gè)平面的夾角的范圍是_.當(dāng)夾角等于0時(shí),兩個(gè)平面_;當(dāng)夾角等于時(shí),兩個(gè)平面互相_.(2)兩個(gè)平面法向量的夾角與這兩個(gè)平面的夾角的關(guān)系空間兩個(gè)平面的夾角由它們的法向量的夾角確定.已知平面1與2的法向量分別為n1與n2.當(dāng)0n1,n2時(shí),平面1與2的夾角等于_;當(dāng)n1,n2時(shí),平面1與2的夾角等于_.事實(shí)上,設(shè)平面1與平面2的夾角為,則cos |cosn1,n2|.知識(shí)點(diǎn)三直線與平面的夾角思考若直線l與平面的夾角是0,則直線l與平面是否一定平行?梳理(1)直線與平面夾角的概念平面外一條直線與它在該平面內(nèi)的投影的夾角叫作該直線與此平面的夾角,如圖所示.(2)直線與平面夾角的范圍如

4、果一條直線與一個(gè)平面平行或在平面內(nèi),我們規(guī)定這條直線與平面的夾角是_.如果一條直線與一個(gè)平面垂直,我們規(guī)定這條直線與平面的夾角是_.由此可得,直線與平面夾角的范圍是_.(3)利用向量計(jì)算直線與平面夾角的方法空間中,直線與平面的夾角由直線的方向向量與平面的法向量的夾角確定.設(shè)平面的法向量為n,直線l的方向向量為a,直線l與平面所成的角為.當(dāng)0n,a時(shí),_;當(dāng)n,a時(shí),_.即sin |cosn,a|.類型一直線間的夾角求解例1已知直線l1的一個(gè)方向向量為s1(1,0,1),直線l2的一個(gè)方向向量為s2(1,2,2),求直線l1和直線l2夾角的余弦值.反思與感悟利用直線的方向向量求兩條直線的夾角時(shí),

5、要注意兩條直線的方向向量的夾角與兩條直線的夾角之間的關(guān)系.因?yàn)閮蓷l直線的方向向量的夾角的范圍是0,而兩條直線的夾角的范圍是0,所以這兩者不一定相等,還可能互補(bǔ).由于任意兩條直線的夾角0,所以直線l1和直線l2夾角的余弦值等于|coss1,s2|.跟蹤訓(xùn)練1如圖所示,在三棱柱OABO1A1B1中,平面OBB1O1平面OAB,O1OB60,AOB90,且OBOO12,OA,求異面直線A1B與AO1夾角的余弦值. 類型二求平面間的夾角例2如圖,已知ABCD為直角梯形,DABABC90,SA平面ABCD,SAABBC1,AD.求平面SAB與平面SCD的夾角的余弦值. 反思與感悟利用法向量求平面間夾角的

6、大小的一般步驟(1)建立適當(dāng)?shù)目臻g直角坐標(biāo)系;(2)分別求出兩平面的法向量;(3)求出兩個(gè)法向量的夾角;(4)確定平面間夾角的大小.跟蹤訓(xùn)練2如圖,在四棱錐SABCD中,SD底面ABCD,ABDC,ADDC,ABAD1,DCSD2,E為棱SB上的一點(diǎn),平面EDC平面SBC. (1)證明:SE2EB;(2)求平面ADE與平面CDE夾角的大小.類型三直線與平面的夾角例3已知直線l的一個(gè)方向向量為s(1,0,0),平面的一個(gè)法向量為n(2,1,1),求直線與平面夾角的正弦值.反思與感悟注意公式sin |cosn,a|中,是線面夾角的正弦值等于直線的方向向量與平面的法向量的夾角的余弦值的絕對(duì)值,不要記

7、錯(cuò).跟蹤訓(xùn)練3如圖所示,已知直角梯形ABCD,其中ABBC2AD,AS平面ABCD,ADBC,ABBC,且ASAB.求直線SC與底面ABCD的夾角的余弦值. 1.在兩個(gè)平面內(nèi),與兩個(gè)面的交線都垂直的兩個(gè)向量分別為(0,1,3),(2,2,4),則這兩個(gè)平面夾角的余弦值為()A. B.C. D.或2.已知在正四棱柱ABCDA1B1C1D1中,AA12AB,則CD與平面BDC1的夾角的正弦值是()A. B. C. D.3.在矩形ABCD中,AB1,BC,PA平面ABCD,PA1,則PC與平面ABCD的夾角大小為_(kāi).4.已知直線l1的一個(gè)方向向量為a(1,1,2),直線l2的一個(gè)方向向量為b(3,2

8、,0),則兩條直線夾角的余弦值為_(kāi).5.已知平面1的一個(gè)法向量為n1(1,1,3),平面2的一個(gè)法向量為n2(1,0,1),求這兩個(gè)平面夾角的余弦值.用坐標(biāo)法求異面直線的夾角的一般步驟(1)建立適當(dāng)?shù)目臻g直角坐標(biāo)系;(2)求出兩條異面直線的方向向量的坐標(biāo);(3)利用向量的夾角公式計(jì)算兩條直線的方向向量的夾角;(4)結(jié)合異面直線夾角的范圍得到異面直線的夾角.提醒:完成作業(yè)第二章5答案精析問(wèn)題導(dǎo)學(xué)知識(shí)點(diǎn)一思考1不一定.若l1,l2的方向向量的夾角為0,內(nèi)的角時(shí),l1與l2的夾角為a,b,否則為a,b.思考20.梳理(1)(2)(0,垂直0,(3)s1,s2s1,s2知識(shí)點(diǎn)二思考0.梳理(1)0,重

9、合垂直(2)n1,n2n1,n2知識(shí)點(diǎn)三思考不一定.梳理(2)00,(3)n,an,a題型探究例1解s1(1,0,1),s2(1,2,2),coss1,s20,s1,s290,直線l1與直線l2的夾角為s1,s2,直線l1與直線l2夾角的余弦值為.跟蹤訓(xùn)練1解建立如圖所示的空間直角坐標(biāo)系,則O(0,0,0),O1(0,1,),A(,0,0),A1(,1,),B(0,2,0),(,1,),(,1,).|cos,|.異面直線A1B與AO1夾角的余弦值為.例2解如圖,以A為坐標(biāo)原點(diǎn),分別以AD,AB,AS所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則S(0,0,1),D(,0,0),C(1,1,0

10、),B(0,1,0),(,0,1),(1,1,1).設(shè)平面SCD的一個(gè)法向量為n(x,y,z),則n0,n0,令z1,得n(2,1,1).易得是平面SAB的一個(gè)法向量,且(1,0,0),cos,n.設(shè)平面SAB與平面SCD的夾角為,則cos .跟蹤訓(xùn)練2(1)證明以D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),B(1,1,0),C(0,2,0),S(0,0,2),(0,2,2),(1,1,0),(0,2,0).設(shè)平面SBC的一個(gè)法向量為m(a,b,c).由m,m,得令b1,則m(1,1,1).又設(shè)(0),則E(,),(,).設(shè)平面EDC的一個(gè)法向量為n(x,y,z).由n,n,得令x2,則n(2,0,).由平面EDC平面SBC,得mn,mn0,20,即2,SE2EB.(2)解由(1),知E,(,),(,),0,ECDE.取線段DE的中點(diǎn)F,則F(,),(,),0,F(xiàn)ADE.向量與的夾角或其補(bǔ)角等于平面ADE與平面CDE的夾角.計(jì)算得cos,故平面ADE與平面CDE夾角的大小為60.例3解coss,n0,s,n,直線l與平面的夾角s,n,sin sin(s,n)coss,n.即直線與平面夾角的正弦值為.跟蹤訓(xùn)練3解由題設(shè)條件知,以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AD,AB,AS所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系(如圖所示). 設(shè)AB1,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論