




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第11講,高精度有限差分方法,1,守恒型有限差分格式的構造,有限差分WENO格式,2,守恒型有限差分格式的構造,基本方程 均勻網格 已知某個時刻的 求數值通量函數 使得 半離散格式 +時間推進,3,構造方法,直接對導數進行離散,然后導出通量表達式 直接推導數值通量!,4,思路:如果找到一個函數 ,滿足 因此,只需使下面關系成立, 則有,5,則顯然有,如何得到 定義原函數 則 比較有限體積方法: : 以 為中心的 寬度區(qū)間內 的平均值,6,已知 ,則可以確定 對 做Lagrange插值(先要選定模板) 可得: 求導: ENO/WENO格式的界面處物理量值的計算方法適用于計算有限差分方法數值通量!
2、,7,注意和有限體積方法的區(qū)別!,8,在實際實施過程中,感興趣的是控制體界面處的左右狀態(tài)。我們利用 計算 Shu給出了具體公式如下:,均勻網格,9,具體公式(均勻網格),10,基于ENO/WENO的有限差分格式,標量方程 均勻網格,半離散格式 通量,11,時間積分 ENO/WENO重構的目的是計算正負通量,12,ENO/WENO重構,格式的空間精度取決于ENO或WENO重構的階數。,13,基于ENO/WENO的有限差分格式,方程組 矢通量分裂 采用StegerWarming或Van Leer的方法把通量分解成 用ENO(WENO)插值方法計算單元界面正負通量 計算通量函數 選擇合適的時間積分方
3、法(如RungeKutta方法) 推進求解,14,每個分量分別重構!,特征分解 對于固定的 1 2確定i和i1點ENO/WENO重構需要用到的所有可能的模板對應的網格點, 在這些網格點計算 3對于特征通量的每個分量進行ENO重構, 計算 4,15,緊致格式,16,常規(guī)差分近似,導數的差分近似1:常規(guī)方法 待定參數 最高精度 中有一個參數可取任意值 中有兩個參數可取任意值 依次類推,17,緊致差分近似,導數的差分近似2:緊致格式(Lele JCP,1992) 系數確定:兩側分別作Taylor展開 待定系數:k+l+m+n+2;最高精度:k+l+m+n+1 的確定:求解方程組,需邊界條件、邊界格式
4、,18,守恒型緊致差分格式的構造,基本方程 均勻網格 已知某個時刻的 求數值通量函數 使得 半離散格式 +時間推進,19,思路:如果找到一個函數 ,滿足 因此,只需使下面關系成立, 則有,20,則顯然有,如何得到 定義原函數 則 比較有限體積方法: : 以 + 1 2 為中心的 寬度區(qū)間內 的平均值,21,已知 ,則可以確定 利用 用緊致格式計算 兩種方法,22,1,2,確定系數 實際計算,守恒型迎風緊致格式,守恒型左偏心緊致格式,23,,,,,階格式,守恒型迎風緊致格式,守恒型右偏心緊致格式,24,,,,,階格式,,,,,最終格式,25,緊致格式的問題,要求在差分涉及的模板上解是光滑的。 不
5、能計算有間斷的流動 在間斷附近有數值振蕩 可能導致計算發(fā)散 解決方法 緊致WENO混合格式,26,Hybrid Compact-WENO Scheme: Scalar Case (1),Hybrid Compact-WENO Scheme: Scalar Case (2),Hybrid Compact-WENO Scheme: Scalar Case (3),Hybrid Compact-WENO Scheme: Scalar Case (4),Hybrid Compact-WENO Scheme: Euler Equations (1),Eigenvalues and Eigenvector
6、s at Local characteristic variables Hybrid scheme in terms of characteristic variables,Hybrid Compact-WENO Scheme: Euler Equations (2),Final Scheme,Test Cases(1),Shu-Osher Problem, WENO,Test Cases(2),Shu-Osher Problem,Test Cases(3),Shu-Osher Problem,Test Cases(4),Shu-Osher Problem,Test Cases(5),Doub
7、le Mach Reflection,Test Cases(6),Double Mach Reflection: Present Method,Test Cases(7),Double Mach Reflection: WENO Method,Test Cases(8),Double Mach Reflection: Pirozzoli Method,Test Cases(9),Shock-Vortex Interaction,Test Cases(10),Shock-Vortex Interaction: Present Method,Test Cases(11),Shock-Vortex
8、Interaction: WENO Method,Test Cases(12),Shock-Vortex Interaction: Pirozzoli Method,差分格式的色散耗散特性及其優(yōu)化,45,46,1. 差分格式的色散與耗散,46,色散和耗散 是周期為L的周期性函數,把0,L上劃分為N等分,網格間距h=L/N,對 作Fourier級數展開,47,無量綱化,導數精確值,色散和耗散 導數的差分近似,48,逼近,的程度代表了差分近似的色散和耗散,色散和耗散,49,耗散,色散,50,a 二階中心差分 b 四階中心差分 c 四階中心型緊致格式 d 六階中心型緊致格式,色散關系,51,耗散關系
9、,52,色散和耗散的優(yōu)化準則: Dispersion: should be as small as possible; Dissipation: A small amount of dissipation is necessary Central difference scheme may be insufficient in suppressing the numerical oscillation and can lead to instability: (Lechner, 2001) In the range of high wave numbers, the waves propaga
10、te at an incorrect speed, and it can be desirable to damp them as much as possible (Pirozzoli, 2002) The optimal value of dissipation is problem-dependent The bandwidth-optimized WENO scheme (Martin, 2006) works well in the DNS of supersonic boundary layer, but causes oscillations in the case studie
11、d by Cai (2008) It is desirable for a scheme to have minimized dispersion and controllable dissipation(MDCD).,52,53,2.線性色散最小、耗散可控差分格式(MDCD),53,54,MDCD -FD scheme,Finite difference discretization of using (2r+1) symmetrical stencils,Lemma 1:If approximates to (2r2)th order of accuracy on (2r+1) symme
12、trical stencils, the dispersion and dissipation of the corresponding semi-discrete scheme are independent of each other.,54,55,MDCD -FD scheme,If approximates to (2r -2)th order of accuracy, it can be written in the following general form,where,55,56,MDCD -FD scheme,Fourier transformation:,Dispersio
13、n,Dissipation,56,57,MDCD -FD scheme,Lemma 2:If with 2n free parameters approximates to (2r-2n)th order of accuracy on (2r+1) symmetrical stencils, then the dispersion of the corresponding semi-discrete scheme is determined by n free parameters and the dissipation is determined by other n free parame
14、ters. Lemma 1 and Lemma 2 make it possible to develop finite difference schemes with minimized dispersion and controllable dissipation.,57,58,Dispersion and Dissipation of MDCD,For the case r=3 (Using Lemma 1 ),Dispersion :,Dissipation :,58,59,The optimal value of is obtained by the minimization of
15、the following function :,The dispersion properties of the scheme is determined by,The dissipation properties of the scheme is determined by,Dispersion and Dissipation of MDCD,59,60,Dispersion and Dissipation,Compare of the dispersion properties,60,優(yōu)化結果:=8 disp=0.046378,61,Dispersion and Dissipation,
16、The dissipation of MDCD can range from zero to an arbitrary value The dissipation of UW5 and C6 is fixed,為保證格式穩(wěn)定性, 通常取,62,63,3. MDCD-WENO混合格式,63,64,Hybrid scheme: MDCD-HY,rc=0.4,64,可進一步推廣到方程組、多維問題,NS方程,,65,4. 計算結果,65,66,Linear wave equation:,Linear transport equation,Initial condition:,A wave packet
17、 characterized by sine shape wave with different frequency. As m becomes larger, it contains more high wave number elements,MDCD-HY(0),66,67,Linear transport equation,67,68,Linear transport equation,68,69,Shu-Osher problem:,This test case represents a Mach 3 interacting a sine entropy wave. Both sma
18、ll scale features and discontinuities are contained.,Initial condition:,Computational condition: grid points: N=200 CFL=0.2,MDCD-HY(0),MDCD-HY(0.015),69,70,Shu-Osher problem:,70,71,Propagation of broadband sound wave,A sound wave packet which contains acoustic turbulence Characterized by different l
19、ength scale and a given spectrum.,Initial condition:,Energy spectrum:,Computational condition: grid points: N=128 CFL=0.2,MDCD-HY(0),71,72,Propagation of broadband sound wave,Broadband sound wave propagation k0=4,72,73,Propagation of broadband sound wave,Broadband sound wave propagation k0=8,73,74,P
20、ropagation of broadband sound wave,Broadband sound wave propagation k0=12,74,75,2-D viscous shock tube,Computational condition: Grid points: N=300*150 CFL=0.3,Rehaman et al (AIAA, 2010),75,76,2-D viscous shock tube,Case A Contour of density,76,77,2-D viscous shock tube,Case B Contour of density,77,7
21、8,2-D viscous shock tube,Case C Contour of density,MDCD-HY(0.046),78,79,2-D viscous shock tube,Comparison of CPU time,MDCD-HY is about 15% more efficient than WENO-JS,79,X:streamwise,Y:spanwise,Z:wall-normal,Relevant parameters for DNS,DNS of compressible wall turbulence,Boundary condition: Periodic
22、 in streamwise and spanwise direction Wall: no-slip boundary condition, isothermal wall,80,Case A: (Mam=0.35) : One-dimensional energy spectral at Z+=20,DNS of compressible wall turbulence,81,Case A: (Mam=0.35): Two-point correlations at Z+=20:,DNS of compressible wall turbulence,82,Case A: (Mam=0.3
23、5) statistic quantities:,Mean streamwise velocity,RMS velocity,Reynolds stress,DNS of compressible wall turbulence,83,Case A: (Mam=0.35) :turbulent flowfield,vortex structures,Streaks at z+=15,DNS of compressible wall turbulence,84,Case B: (Mam=1.5) statistic quantities:,Mean density, velocity and t
24、emperature,RMS velocity,RMS temperature,RMS density,DNS of compressible wall turbulence,85,Case B: (Mam=1.5) One-dimension velocity energy spectra with different grid points :,DNS of compressible wall turbulence,Streamwise velocity,Spanwise velocity,Wall-normal velocity,86,Turbulent flow in a channe
25、l with wavy wall,Computational domain: 8*2*4 (h=2),Geometry:,Reynolds number:,87,(Mam=0.35) Turbulent statistic at crest and the valley :,streamwise velocity,Wall-normal velocity,RMS streamwise velocity,RMS wall-normal velocity,Turbulent flow in a channel with wavy wall,88,(Mam=0.35) turbulent flowf
26、ield:,Near wall vortex structures,Turbulent flow in a channel with wavy wall,89,Smart wall Opposition velocity control:,We restrict the maximum amplitude of wall deformation to,Flow velocity at,Active control: Flow control using the smart wall approach,90,The reduction of skin friction is nearly 40%
27、 The reduction of total drag is about 30%,Case A: (Mam=0.35),Active control: Flow control using the smart wall approach,91,The reduction of skin friction is about 20% The pressure drag is negligible,Case B: (Mam=1.5),Active control: Flow control using the smart wall approach,92,Without Control,With
28、Control,Active control: Flow control using the smart wall approach,Contour of streamwise vorticity,93,Active control: Flow control using the smart wall approach,Without Control,With Control,Near wall vortex structures,94,95,Flow control using the smart wall approach,Wall deformation and near wall flow structures,ParCFD2010,95,Active dimples:,Control scheme:,Number of dimples:3232,Active control: active dimple,Longer in streamwise direction,96,Active control: active dimple,Reduction ra
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 董事及董事會管理辦法
- 監(jiān)理公路養(yǎng)護管理辦法
- 導游強制購物管理辦法
- 律師協會會計管理辦法
- 戶外自助燒烤管理辦法
- 城市供水價格管理辦法
- 鄆城車輛閉環(huán)管理辦法
- 科室分層能級管理辦法
- 以示范為翼展中小學美術教學新程
- 學??蒲袌F隊管理辦法
- 臨時用電線路的接地與絕緣
- 裝載機的基礎知識-裝載機的結構及儀表
- 現代低壓電器技術 課件 2. 常見低壓電器
- 計量經濟學論文eviews
- 浙江天垣新型墻體材料有限公司年產40萬立方米ALC板材項目環(huán)境影響報告
- 優(yōu)生優(yōu)育課件-提高生育健康水平
- 單位車輛領取免檢標志委托書范本
- 人教版小學數學一年級上冊全套課件合集
- 父母與高中生之間的協議書
- 2022年韶關市法院系統(tǒng)招聘考試真題
- 2022年江蘇省射陽中等專業(yè)學校工作人員招聘考試真題
評論
0/150
提交評論