




已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
外文原文: Future of microelectromechanical systems (MEMS) Minhang Bao a, Weiyuan Wang b Fudan University, Shanghai. 200433 China b Shanghai Institute of Metallurgy. Shanghai. 200050 China Abstract The development of microelectromechanical systems (MEMS) based on micromachining and microelectronics technologies has been significant for almost a decade. However, it is unrealistic to consider micromachining technology as a micro version of conventional machining technology. As a matter of fact, micromachining technology stemmed from the planar technology of silicon and is basically a two.dimensional processing technology. On the other hand, it is obvious that a micromachine cannot compare with a conventional machine in strength and power. For the successful development of MEMS in the future, a simple rule is suggested by the experience gained in the past few years: try to avoid as much as possible mechanical coupling with the outside world while trying hard to improve the MEMS technology to enhance the mechanical power of the devices. In addition to that, the strategy proven to be correct for the development of solid-state sensors also applies: MEMS devices should mainly be developed for new applications with a vast market. Their substitution for traditional applications should not be considered as a main strategy of development. Based on these arguments, the future development of MEMS devices and technologies is further discussed in the paper. 1. The development of MEMS On the front cover of the earlier issues of this journal (Sensors and Actuators) there was a subtitle just under the main title which read: international journal devoted to the research and development of solid-state transducers 1. These plain words mean to us that the founder of the journal, Professor Simon Middelhoek, foresaw the emergence of solid-state actuators, and, therefore, micivelecisome, chaaical systems (i.e., MEMS), from the very beginning of the last decade. MEMS are integrated systems consisting of microelectronics (IC), microactuators and, in most cases, microsensors. Microelectronics technology has been developing rapidly since 1960 and has been quite mature since the 1970s. Micromachining technology, the technology for mechanical sensors and microactuators, has been developing almost in parallel with microelectronics technology, though the former has lagged far behind in sophistication. At an earlier stage, the development of micromachining was focused on bulk micromachining mainly associated with solid-state pressure transducers. People at the time did not expect too much from the integration of micromechanical structures and microelectronics because bulk-micromachin-ing technology as well as solid-state pressure transducers were relatively difficult to integrate with microelectronics. In 1987, the first movable micromechanical parts were fabricated by surface-micromachining technology 2 and a typical microactuator, the electrostatic micromotor, was successfully operating in the next year 3. Due to the high compatibility between the surface micromachining and microelectronics technologies, the integration between micromachines and microelectronics led to the birth of MEMS in the following years. As there has been no clear definition of MEMS, in this article we consider a typical MEMS device as: (1) A device that consists of a micromachine and microelectronics, where the micromachines are controlled by microelectronics. Quite often, microsensors are involved in the control system by providing signals to the microelectronics. (2) A device that is fabricated using micromachining technology and an IC process, i.e. technologies of batch fabrication. (3) A device that is integratedly born, without individual assembly steps for the main parts of the device except for the steps required for packaging. These points mean that a pressure transducer is not considered as a typical MEMS device but as a mechanical sensor as there is no microclectronics control over micromechanical structures. On the other hand, a micromotor is not a typical MEMS device but a typical part ofMEMS D a microactuator. As MEMS are an integration of micromachining technology and microelectronics (IC) technology, they emerged soon after the advent of the micromachine in 1987. The development of MEMS for almost one decade has been significant: various new techniques have been developed, numerous new devices have been designed and fabricated with some of them being commercialized, and research on MEMS has been conducted by almost all major universities and research institutions, enjoying wide support from industries and government agencies. The field has been described as growing into a credible, dynamic and popular adolescence from an uncertain child in less than a decade 4. But every silver lining has a cloud, and this case was no exception. Some problems developed during the rapid development too. The rapid appearance of new micromachines stirred up high expectations from the scientific communities and even public news media. Some tended to believe that the most sophisticated electromechanical system, like a robot, can be copied into a micro version and the micromachine can still do a similar job to its macro counterparts. There have aoo been outrageous predictions, like microrobots gathering up radioactive particles at toxic sites, and microsubmarines stalking and attacking viruses and cancerous cells while swimming through the bloodsueam. The real development can hardly match such a development pattern from the news media. Though micromotors have been designed and fabricated one by one, they run into the common problem of small torque and relatively large friction on the micron scale. People are usually excited simply by the functioning of a micromotor, not being able to expect too much in terms ,:f torque/ power output. It seems impractical to put them into use like a conventional machine. So far no micromachine can replace a conventional machine in any practical application. This situation has given rise to a sceptical cloud over the future of MEMS. However, application is always the final driving force for any emerging technology. Starting at the beginning of this decade, the practicai application of a microactuator has been talked about more and more often by the transducer community and more and more efforts have been made to put microactuators into real application. There have been two approaches so far to push forward the application of microactuators. One of the approaches is to make laicroactuators more powerful and stronger. For example, the force produced by a bimetal structure is large enough for many applications, such as to open and close microvalves. This scheme has been quite successful so that the electrocontrolled microvalve has been commercialized. Shape memory alloy (SMA) can also produce a large force and has been considered for similar purposes. For micromotors, electromagnetic motors have been designed and fabricated. The torque can be several orders of magnitude higher than that of an electrostatic micromotor, but there are still quite a lot of problems related to the design and processing. Another approach is to look for some new applications where little force output is required. To do this, direct mechanical coupling between the micromachine and the macro world should be avoided. The interface between the MEMS and the outside world will be through electrical, optical and magnetic signals. This approach has resulted in quite a lot MEMS devices with practical applications; some of them has been commercialized. This successful experience tell us that the future of MEMS is bright if the nature of micromachining technology is respected. 2. The nature of micromachining technology MEMS are the offspring of two modern technologies, the microelectronics and the micromachining technologies. From a technological point of view, there are some affinities between these two technologies. It is well known that microelectronics (IC) technology stemmed from the planar technology of silicon. As a matter of fact, the application of planar processes of silicon to the formation of mechanical structures gave birth to micromachining technology in the 19/0s. The successful application of planar technology in solid-state pressure transducers promoted the development of micromachining at the early stage. Basically, there are two main categories of micromachining techniques: bulk micromachining and surface micromachining. The techniques are called bulk micromachining when the bulk material of the substrate (in general silicon) is involved in the process and as surface micromachining if only the deposited (or plated) films on the surface of the substrate are involved in the machining process. Both types of micromachining technologies have the same virtues as microelectronics technology, i.e., high precision and batch fabrication, but they have the same limitations stemming from planar processing technology. First, the structures made by micromechanical technology can be three dinensional in appearance, but they are two dimensional in essence as they are evolved according to certain rules from planar etching masks. The structures can be made more complicated by repeating the film deposition and masked etching more than once, but the flexibility is still limited by the number of repititions and the processing order starting from the surface of the substrate. Therefore, it is unrealistic to consider micromachining technology as a micro version of conventional machining technology as it has the limitation of the planar process: a basically two-dimensional processing technology not suitable for assembly steps to construct a machine from indiv;.dually processed parts. We cannot expect micromachining technology to be as flexible and versatile as conventional machining in the conventional world. Some selective deposition and etching techniques claimed to have real three-dimensional capability are under. development 5,6, but it is still too early to fores.e their possible application in practice. Therefore, one simple rule that has to be Ix)me in mind is that all mechanical structures made by conventional mechanical technology cannot he copied in micromechanical versions, and large arrays with simple structure are more suitable for micromachining technology than a single machine with complicated structure. On the other hand, it is obvious that a micromachine can hardly compare with a conventional machine in strength and power. The smaller the structure, the smaller the strength and the power output it can provide. In many cases, micromachines even have difficulties in just running in a conventional environment due to the extra-large friction on the micro scale and the interference of dust, humidity, etc., not to mention on the power output to drive a macromachine. For successful development of MEMS, one more simple rule is suggested: try to avoid as much as possible mechanical power output while trying hard to improve the MEMS technology to enhance the mechanical strength and power of the devices. It is important to respect the nature of a new technology so that its potential can be fully explored. As a matter of fact, there have been many successful experiences in the short history of MEMS by making full use of the advantages and avoiding the disadvantages of micromachining technology. 3. The future of MEMS devices As mentioned above, for the future development of MEMS technology, two-fold efforts should be made: one is to improve micromachining technologies continuously and the other is to develop appropriate devices for practical applition according to the nature of the MEMS technologies. The latter is an urgent task at present, lherefore, the first thing we have to address is: what are the appropriate MEMS devices.? As micromachining technologies have the advantage of high-precision low-cost batch production but the limitations of two-dimensional masking, low strength, low power output and high susceptibility to the interference of many environment factors, such as dust, humidity, etc., the future MEMS devices should be mainly packaged independent subsystems consisting of micromachines microelectrouics and, in many cases, microsensors. The coupling between the MEMS devices and the outside world would mainly be via electrical, optical, magnetic and other non-contact signals for power supplies, conxol information, input and output signals. A large array of relatively simple mechanical structures is preferable to complicated mechanical structures. Also, the future MEMS devices should be aimed at new applications with a vast market so that the device can be mass produced to explore fully the advantage of a planar process in low-cost mass production. Here the argument made by Professor Simon Middelhoek 7 for silicon smart sensors applies to MEMS too: substitution in an old application does not have the potential to create a large enough market. Therefore, it cannot be considered as a main strategy for future MEMS development. As a matter of fact, the above-mentionod approaches have been proven successful in developing MEMS devices in the past and will be adapted for future devel)pment. A variety of MEMS devices meeting the above-mentioned criteria will be developed in the future, and arc described below. 3. MF.MS devices for inertial sensing Silicon accelerometers have been developing rapidly during the last decade and are considered as the next massproduced micromechanical sensor after silicon pressmsensors. The most attractive type of microaccelerometer, the fort.ebalanced accelemmeter, is in fact a MEMS device consisting of a beam-mass mechanical structure, a capacitive sensor for the position of the mass, the signal-processing electronics for the sensor and an electrostatic actuator to apply a feedback force to the seismic mass. A variety of force-balanced microaccelerometers have been developed by now, but so far the most successful one is the fully integrated microaccelerometer, ADXLSO, which was released for production about two yeats ago 8. The mechanical structure of the devices is fabricated by means of polysilicon surface micromachining, and the electronics are fabricated by means of BiCMOS IC technology. Aiming at applications for airbag release control, the operation range of the device is 50g with a single 5 V power supply. The entire microsystem is fabricated on a silicon chip measuring 3 mm 3 mm and housed in a TO- I00 can. Though the process is considered quite sophisticated and difficult 9, the developer claimed that they can be marketed at a cost under US$15 apiece. Furthermore, an improved version with an operation range as low as 5g or lg has been announced 10. Similar devices based on SIMOX SOI material 11 and thick epi-polysilicon have also been developed 12. Force-balanced microaccelerometers can be considered as one of the most successful MEMS at present. One reason for their success is that the sensing of acceleration by the seismic mass is through non-contact inertial force and the output is an electrical signal so that the whole system can be hermetically sealed in a package to ensure that the performance of the micromechanical structures would not be hindered by any environmental interferences. The second reason is that accelerometers can find mass application in a variety of motioncontrol systems. A notable example is for mass applications in airbag control in automobiles. This kind of application spurred significant interest and investment from industry. Another inertial sensing device, the gyroscope, has a similar operation pattern to the accelerometer and can also find wide applications in motion control, including automotive applications such as traction control systems and ride-stabilization systems, consumer electronics applications such as video camera stabilization and model aircraft stabilization, computer applications such as an inertial mouse, robotics applications and, of course, military applications. Therefore, the micromechanical gyroscope has been receiving vigorous development efforts in recent years. As the high-speed rotation parts and bearings in a traditional gyroscope are difficult to miniaturize and batch fabricate by micromechanical technologies to produce low-cost devices, micromechanical gyroscopes are exclusively of vibrating types, including double-gimbals structure 13, cantilever beam structure 141, tuning-fork structure 15 and vibrating ring structure 16. Among them the vibrating ring device is the most sophisticated one, which is developed by a LIGA-iike post-circuit process for incorporating highaspect- ratio electroformed metal microstructures with a CMOS circuit for control and readout electronics. Though none of these micromechanical gyroscopes has been commercialized yet, it is quite likely that some form of MEMS gyroscope will be mass produced in the near future. References 1 S. Middelhoek, Sensors and Actuators. ! ( 1981 ) front cover. 2 L.S. Fan, Y.C. Tai and R.S. Muller, Integrated movable micromechanical structure for sensors and actuators, IEEE Trans. Electron Devices. 35 (1988) 724-730. 3l L.S. Fan, Y.C. Tai and R.S. Muller, IC-processed electrostatic micromotor, Proc. 1988 IEEE int. Electron Devices Meeting, San Francisco, CA, USA, !1-14 Dec. 1988. pp. 666-669. 4 K. Petersen, MIEMS: What lies ahead, Tech. Digest, 8th Int. Conf. Solid.State Sensors and ActuatorslEurosensors IX, Stockholm. Sweden. 25-29.;une, 1995, Vol. 1, pp. 894-897. 5 T.M. Bloomestein and D.J. Ehrlich, Laser deposition and etching of three-dimensional microstructuw, Tech. Digest, 6th Int. Conf. Solid- State Sensors and Actuators (Transducers 91), San Francisco. CA, USA, 24-28June, 1991, pp. 507-511. 6 H. Westberg, M. Boman, S. Johansson and J. Schweitz, Truly three dimensional structures microfabricated by laser chemical process, Tech. Digest, 6th Int. Conf. Solid.State Sensors and Actuators (Transducers 91), San Francisco, CA, USA, 24-28 June, 1991, pp. 516-519. 7 S. Middelhoek, Seminar at Shanghai Institute of Metallurgy. Chinese Sciences Academy, October 1995. 8 W. Kuehnel and S. Sherman, A surface micromaehined silicon acceleromeler with on-chip detection circuitry, Sensors and Actuators A, 45 (1994) 7-16. 9l T.A. Core, W.K. Tsang and SJ. Sherman. Fabrication technology for an integrated surface micromachined sensor. Solid State Technol., :Oct.) (1993) 39. 10 K.H.L. Chart. S.R. Lewis. Y. Zhao, R.T. Howe, S.F. Ban and R.G. Marcheselli, An integrated force-balanced capacitive accelemmeter for Iow-g application. Sensors and Actuators A, 52-54 (1996) 472-476. 11 L. Zimrnermann et at., Airbag application: a microsystem including a silicon capacitive acceleromeer, CMOS switched capacitor electronics and true self-test capabi.*!ly, sensors and Actuators A. 46-47 (1995) 190-195. 12 M. Offenherg, F. I.,arnr, B. Eisner, H. Munzel and W. Riethmuller, Novel process for monolithic integrated accelerometer, Tech, Digest, 8th int. Conf. Solid-State Sensors and Actuators/Eurosensors IX, Stockholm, Sweden, 25-29 June, 1995, Vol. 1, pp. 589-592. 13 P. Greiff, B. Boxenhom, T. King and L. Nilus, Silicon monolithic micromechanical gyroscope, Tech. Digest. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers 91). San Francisco, CA. USA, 24-28 June, 1991. pp. 966-968. 14 K. Maenaka and T. Shiozawa, Silicon rate sensor using anisotmpic etching technology, Tech. Digest, 7th Int. Conf. Solid.State Sensors and Actuators (Transducers 93), Yokohama, Japan, 7-10 June, 1993,pp. 642-4545. 15 J. Soderkvist, Micromachined gyroscopes, Tech. Digest. 7th Int. Conf.Solid-State Sensors and Actuators (Transducers 93), Yokohama,Japan, 7-10June, 1993, pp. 638-641. 16 M.W. Putty and K. Najafi, A micromachined vibrating ring gyroscope,Tech. Digest, Solid-State Sensors and Actuators Workshop. Hilton Head lsland, SC, USA, June 1994, pp. 213-220. 17 J.B. Sampsell, The digital micromirror device and its application to project displays, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducers 93), Yokohama, Japan, 7-10June, 1993, pp.24-27. 18 News focus: new flat displays emerge in Japan Electronics Show 95,Nilckei Electronics Asia, (Dec.) ( 1995 ) 28. 19 O. Tabata, R. Asabi, N. Fujitsuka, M. Kimura and S. Sygiyama, Electrostat,.c driven optical chopper using SOl wafer, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducers 93),Yokohama, Japan, 7-10 June, 1993, pp. 124-127. 20 E. Obermeier. J. Lin and V. Schkuchting. Design and fabrication of an electrostatistically driven micro-shutter, Tech. Digest, 7th Int. Conf.Solid-State Sensors and Actuators (Transducers 93), Yokohama,Japan. 7-10June, 1993. pp. 132-135. 21 S.T. Wilkinson, Y.W. Kim, M.G. Allen and N.M. Jokerst, Integration of thin-film compound semiconductor photonic devices onto micromachined movable platforms, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducers 93). Yokohama, Japan,7-10June, 1993, pp. 148-151. 221 J. Mohr, M. Kohl and W. Menz, Micro optical switching by electrostatic linear actuators with large displacements, Tech. Digest,7th Int. Conf. Solid-State Sensors and Actuators (Transducers 93),Yokohama, Japan, 7-10June, 1993, pp. 120-123. 23l C.H. Ahn, Y.J. Kim and MG. Allen, A fully integrated micromachined toroidal inductor with a nickel-iron on magnetic core, Tech. Digest,7th Int. Conf. Solid-State Sensors and Actuators fTransducers 93),Yokohama, Japan. 7-10 June, 1993, pp. 70-73. 24 S. Kawahito, Y. Sasaki, M. Ishida and T. Nakamura, A flux-gate magnetic sensor with micromachined solenoids and electroplated pennalloy cores, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducers 93), Yokohama, Japan, 7-10June, 1993, pp. 888-891. 25 F. Catdot, J. Gohet, M. Boganski and F. Rudolf, Microfabrication of tdgh-density arrays for micro electromagnets wlth on chip electronics, Tech. Digest, 7th int. Conf. Solid-State Sensors and Actuators (Transducers 93), Yokohamo. Japan, 7-10June, 1993, pp. 32-35. 26 W. Tang, V. Temesvary, JJ. YBO, Y.C. Tat and D.K. Miu, Silicon microactuators for computer disk drives, Jpn. J. Appl. Phys., 35 (1996).50-356. 27 D. Miu and Y.C. Tai, Scaled technology: 10 GB/in 2. Workshop on MEMS. Taipai. Tmwan. 21-24 March. 1994. p. 36. 譯文: 微機(jī) 電系統(tǒng)的未來( MEMS) Minhang Bao a, Weiyuan Wang b Fudan University, Shanghai. 200433 Chinab Shanghai Institute of Metallurgy. Shanghai. 200050 China 摘要 基于微加工和微電子技術(shù)微機(jī)電系統(tǒng)( MEMS)的發(fā)展已經(jīng)近十年顯著。然而,這是不切實(shí)際的考慮微加工技術(shù)為傳統(tǒng)加工的微型版本技術(shù)。由于事實(shí)上,微機(jī)械加工技術(shù),硅的平面技術(shù)梗和基本上是一個(gè)二維加工技術(shù)。另一方面,很明顯,一個(gè)微機(jī)械不可以與常規(guī)的機(jī)械強(qiáng)度比較。對于 MEMS 在未來的成功發(fā)展,一個(gè)簡單的規(guī)則,建議由獲得了在過去數(shù)年的經(jīng)驗(yàn):盡量為了避免盡可能多的機(jī)械耦合與外部世界的同時(shí)努力提高 MEMS 技術(shù)提升該裝置的機(jī)械功率。除此之外,被證明是正確的固態(tài)傳感器的發(fā)展戰(zhàn)略也適用: MEMS 器件應(yīng)主要用于具有廣闊的市場新開發(fā)的應(yīng)用程序。其取代傳統(tǒng)的應(yīng)用程序不應(yīng)該被視為發(fā)展的主要策略。根據(jù)這些參數(shù), MEMS器件和技術(shù)的未來發(fā)展在本文中進(jìn)一步討論 . 1。 MEMS 的發(fā)展 在本期刊的早期問題的前蓋 (傳感器和執(zhí)行器)有剛下的字幕 其內(nèi)容主標(biāo)題:“國 際期刊致力于固態(tài)傳感器的研究和發(fā)展”。這些平實(shí)的話語對我們意味著該雜志的創(chuàng)始人, 西蒙教授預(yù)見的出現(xiàn)固態(tài)驅(qū)動(dòng)器,并且,因此,micivelecisome chaaical 系統(tǒng)(即, MEMS),從最后的一開始十年。 微機(jī)電系統(tǒng)是集成的系統(tǒng),包括微電子 ( IC),微致動(dòng)器,并且在大多數(shù)情況下,微傳感器。 微電子技術(shù)得到了迅速發(fā)展自 1960 年以來,并已自 1970年代已經(jīng)相當(dāng)成熟。微技術(shù),該技術(shù)為機(jī)械傳感器和微執(zhí)行器,一直在開發(fā)幾乎處于隨著微電子技術(shù)的平行,但前者已成熟遠(yuǎn)遠(yuǎn)落后。 在較早的階段,微機(jī)械加工的發(fā)展主 要集中在體微機(jī)械加工主要是與相關(guān)固態(tài)壓力傳感器。人在當(dāng)時(shí)都沒有預(yù)計(jì)從微機(jī)械一體化太多結(jié)構(gòu)和微電子因?yàn)榕?MEMS 技術(shù)以及固態(tài)壓力傳感器相對難以與微電子集成 . 在 1987,第一可動(dòng)微機(jī)械部件是通過表面微機(jī)械加工技術(shù)制造的和典型的微致動(dòng)器,靜電微電機(jī),是成功在明年操作。由于高表面微加工和之間的兼容性微電子技術(shù)之間的融合微機(jī)械和微電子導(dǎo)致的誕生 MEMS 在隨后的歲月。 由于出現(xiàn)了微機(jī)電系統(tǒng)沒有明確的定義,在此文章中,我們考慮一個(gè)典型的 MEMS 器件為: ( 1)一種設(shè)備,包括一個(gè)微機(jī)械和微電子,其中微型機(jī)械是由控制微 電子。很多時(shí)候,微傳感器參與控制系統(tǒng)通過對微電子提供的信號。 ( 2)正在使用微加工的設(shè)備技術(shù)與 IC 工藝,即。技術(shù)批制造。 ( 3)設(shè)備有一個(gè)完整出生的,沒有個(gè)人裝配步驟的設(shè)備的主要部分以外的包裝所需的步驟 . 這些點(diǎn)表示的壓力傳感器不被認(rèn)為是作為一個(gè)典型的 MEMS 裝置,但作為一個(gè)機(jī)械傳感器,因?yàn)闆]有 MEMS 控制微機(jī)械結(jié)構(gòu)。另一方面,微型電機(jī)不是典型 MEMS 器件,但一個(gè)典型的一部分微致動(dòng)器。由于 MEMS 是微機(jī)械加工技術(shù)的集成和微電子(集成電路)技術(shù),它們出現(xiàn)后不久,微機(jī)械在 1987 年問世。發(fā)展 MEMS 的幾乎一 個(gè)十年已經(jīng)顯著: 各種新技術(shù)已經(jīng)發(fā)展,許多新的器件的設(shè)計(jì),并與其中的一些制備被商業(yè)化,并在微機(jī)電系統(tǒng)的研究已進(jìn)行幾乎所有主要的大學(xué)和研究機(jī)構(gòu) ,從行業(yè)及政府享有廣泛的支持機(jī)構(gòu)。該字段已被描述為“生長成 從不確定的公信力,動(dòng)態(tài)和流行的青春期在不到十年的孩子 . 但每一線希望有云,這種情況下是沒有例外。在快速發(fā)展而發(fā)展的幾個(gè)問題。新的微型機(jī)器的外觀迅速激起了很高的期望從科學(xué)界甚至公眾的新聞媒體。有的傾向于認(rèn)為,最復(fù)雜的機(jī)電系統(tǒng),就像一個(gè)機(jī)器人,可以被復(fù)制到一個(gè)微版和微機(jī)械罐還是做了類似的工作,以宏觀的同行。有一直 離譜的預(yù)測,像微型機(jī)器人收集了放射性粒子在有毒場所,和 MEMS 跟蹤和攻擊病毒和癌細(xì)胞,而通過游泳。上實(shí)發(fā)展很難匹配從新聞這樣的發(fā)展模式媒體。雖然微電機(jī)的設(shè)計(jì)和制造一個(gè)接一個(gè),他們遇到的小的通病扭矩和相對較大的摩擦在微米尺度。人通常由微型馬達(dá)的運(yùn)轉(zhuǎn)激發(fā)簡單地說,不能夠期望過高的條款, F 的扭矩 /功率輸出。這似乎不切實(shí)際的把它們投入使用像傳統(tǒng)的機(jī)器。到目前為止,還沒有微機(jī)械可代替在任何實(shí)際應(yīng)用傳統(tǒng)的機(jī)器。這情況已經(jīng)引起了懷疑過云的未來微機(jī)電系統(tǒng) . 然而,應(yīng)用程序始終是最終的驅(qū)動(dòng)力任何新興技術(shù)。起始于今年年初十年中,微致動(dòng)器的實(shí)用應(yīng)用已經(jīng)談到越來越多的時(shí)候通過換能器社區(qū)并已使越來越多的努力,把微執(zhí)行到實(shí)際應(yīng)用中。 已經(jīng)有兩種方法,到目前為止,推動(dòng)應(yīng)用微致動(dòng)器。方法之一是讓它更強(qiáng)大。例如,通過雙金屬結(jié)構(gòu)所產(chǎn)生的力是夠大對于許多應(yīng)用,例如打開和關(guān)閉微型閥。這項(xiàng)計(jì)劃相當(dāng)成功,使得微型閥已經(jīng)商業(yè)化。形狀記憶合金( SMA)也能產(chǎn)生很大的力,并已考慮用于類似的目的。對于微型馬達(dá),電磁電機(jī)的設(shè)計(jì)與制造。該扭矩可以是若干個(gè)數(shù)量級比靜電微電機(jī)的高一些,但仍然有相當(dāng)多的有關(guān)的設(shè)計(jì)和加工問題 . 另一種方法是尋找一些新的應(yīng)用其中一點(diǎn)力輸出 是必需的。要做到這一點(diǎn),直接微型機(jī)械與機(jī)械之間的耦合應(yīng)避免宏觀世界。之間的界面 MEMS 與外界將通過電學(xué),光學(xué)和磁信號。這種方法導(dǎo)致了相當(dāng)很多 MEMS 與實(shí)際應(yīng)用的設(shè)備他們中的一些已經(jīng)商業(yè)化。這次成功的經(jīng)驗(yàn)告訴我們, MEMS 的未來是光明的,如果微機(jī)械加工技術(shù)的本質(zhì)是尊重。 2。微加工技術(shù)的性質(zhì) 微機(jī)電系統(tǒng)是兩個(gè)現(xiàn)代技術(shù)的后代中,微電子和微機(jī)械加工技術(shù)。從的技術(shù)觀點(diǎn)來看,也有一些親和性這兩種技術(shù)之間。它是眾所周知,微電子從平面技術(shù)(集成電路)技術(shù)的梗硅。作為事實(shí)上的,平面的應(yīng)用硅的機(jī)械結(jié)構(gòu)的形成過程催生了微加工 技術(shù)。平面技術(shù)的固態(tài)成功應(yīng)用壓力傳感器促進(jìn)微細(xì)加工的發(fā)展在早期階段 . 基本上,有微細(xì)加工的兩個(gè)主要類別技巧:批量微加工和表面微加工。該技術(shù)被稱為體微機(jī)械加工當(dāng)基片的散裝材料(一般的硅)參與的過程,就好像表面微加工的表面上只沉積(或鍍)膜基板都參與了加工過程。這兩種類型的的微加工技術(shù)具有相同的美德微電子技術(shù),也就是說,精度高,批量制造,但它們都具有相同的限制,從而產(chǎn)生平面加工技術(shù) . 首先,結(jié)構(gòu)由微機(jī)械技術(shù)可以是在外觀,但它們是兩個(gè)維本質(zhì),因?yàn)樗鼈兪前凑找欢ǖ难葑円?guī)則從平面蝕刻掩模。該結(jié)構(gòu)可以是變得更加復(fù)雜,重 復(fù)成膜和掩蔽刻蝕不止一次,但柔韌性仍限制重復(fù)的數(shù)目和處理順序從襯底的表面開始。因此,它是不切實(shí)際的考慮微加工技術(shù)作為微版本的常規(guī)加工技術(shù),因?yàn)樗衅矫婀に嚨木窒扌裕阂粋€(gè)基本上二維加工技術(shù)不適合于裝配步驟來構(gòu)造一臺(tái)機(jī)器從逐張 ; 。雙重加工零件。我們不能指望微機(jī)械加工技術(shù)是一樣靈活和通用的如在傳統(tǒng)的常規(guī)機(jī)械加工世界。一些選擇性沉積和蝕刻技術(shù)聲稱有真實(shí)的三維功能正在開發(fā)中,但它仍然是太早雷斯。他們在實(shí)踐中可能的應(yīng)用 . 因此,一個(gè)簡單的規(guī)則必須是九,我在心里由傳統(tǒng)的機(jī)械制造所有的機(jī)械結(jié)構(gòu)在微機(jī)械技術(shù)的版本無法復(fù)制他 ,和大型數(shù)組,結(jié)構(gòu)簡單,比較適合用于微機(jī)械加工技術(shù)比一臺(tái)機(jī)器復(fù)雜的結(jié)構(gòu)。 另一方面,很明顯,一個(gè)微型機(jī)械能很難用常規(guī)的機(jī)械強(qiáng)度比較和電源。較小的結(jié)構(gòu),較小的強(qiáng)度和功率輸出,它可以提供。在許多情況下,微型機(jī)器甚至在剛剛常規(guī)運(yùn)行困難 環(huán)境由于在微觀尺度超大摩擦和灰塵,濕度等的干擾,更不用說上的功率輸出以驅(qū)動(dòng) macromachine. 對于 MEMS,多了一個(gè)簡單的開發(fā)成功規(guī)則建議:盡量避免盡可能多的機(jī)械 動(dòng)力輸出的同時(shí)努力提高 MEMS 技術(shù)以提高機(jī)械強(qiáng)度和功率設(shè)備。 重要的是要尊重的一種新技術(shù)的本質(zhì)是很重要的使其 潛能得以充分發(fā)揮。由于事實(shí)上,有在短期內(nèi)已經(jīng)有許多成功的經(jīng)驗(yàn)微機(jī)電系統(tǒng)的充分利用的優(yōu)勢和歷史避免了微機(jī)械加工技術(shù)的缺點(diǎn)。 3。 MEMS 器件的未來 正如上面提到的,對于 MEMS 的未來發(fā)展技術(shù),應(yīng)使兩方面的努力:一種是不斷提高微細(xì)加工技術(shù)和二是制定實(shí)際應(yīng)用適當(dāng)?shù)脑O(shè)備據(jù)中的 MEMS 技術(shù)的本質(zhì)化。該后者是當(dāng)前的一項(xiàng)緊迫任務(wù),第一件事我們要解決的是:什么是適當(dāng)?shù)?MEMS 器件? 作為微加工技術(shù)具有的優(yōu)點(diǎn)高精度低成本的批量生產(chǎn),但局限性二維掩蔽,低強(qiáng)度,低功率輸出和高敏感性的許多環(huán)境的干擾因素,例如灰塵,濕度等,未來的 MEMS 設(shè)備應(yīng)主要是打包獨(dú)立的子系統(tǒng)由微型機(jī)械 microelectrouics,并且在許多的情況下,微傳感器。 MEMS 結(jié)構(gòu)之間的耦合設(shè)備與外界將主要是通過電,電源光,磁等非接觸式信號供應(yīng),濃度 XOL 信息,輸入和輸出信號。一大陣相對簡單的機(jī)械結(jié)構(gòu)是優(yōu)選復(fù)雜的機(jī)械結(jié)構(gòu) 此外,未來的 MEMS 器件應(yīng)著眼于新的應(yīng)用具有廣闊的市場,使該設(shè)備可批量生產(chǎn),充分發(fā)掘平面工藝的優(yōu)勢在低成本的大規(guī)模生產(chǎn)。這里所提出的論點(diǎn)西蒙Middelhoek 教授硅智能傳感器適用于 MEMS 太:在替代舊的應(yīng)用程序沒有創(chuàng)建一個(gè)足夠大的市場潛力。 因此, 它不能被認(rèn)為是未來的一個(gè)主要策略微機(jī)電系統(tǒng)的發(fā)展。 由于事實(shí)上,在上述提到方法有被證明是成功開發(fā)的 MEMS 器件過去和將被改編為將來發(fā)育。各種滿足上述標(biāo)準(zhǔn)的 MEMS 器件將在將來開發(fā)的,并在下面描述的弧,對于慣性傳感 MF.MS 設(shè)備 。 在硅加速度計(jì)發(fā)展迅速過去十年中,且被視為下一 massproduced 硅后微機(jī)械傳感器。最吸引人型微加速度時(shí),加速度計(jì),實(shí)際上是在一個(gè) MEMS 器件組成光束質(zhì)量的機(jī)械結(jié)構(gòu),一個(gè)電容性傳感器用于質(zhì)量塊的位置,所述信號處理電子設(shè)備為傳感器和靜電致動(dòng)器施加一個(gè)反饋強(qiáng)制地震質(zhì)量。各種 力量平衡microaccelerometers 已經(jīng)發(fā)展到現(xiàn)在,但至今其中最成功的是完全集成的微加速度, ADXLSO,這是發(fā)布了關(guān)于生葉芝前。 該裝置的機(jī)械結(jié)構(gòu)是通過制作裝置的多晶硅表面微加工,以及電子通過的BiCMOS IC 技術(shù)手段制作。針對安全氣囊釋放控制,操作應(yīng)用程序該設(shè)備的范圍 50 克與 5 V 單電源供電。 整個(gè)微系統(tǒng)是制作在硅芯片上測量的 3 mm 3mm,且采用 TO-I00 可以。雖然過程被認(rèn)為是相當(dāng)復(fù)雜和困難的 9,開發(fā)者聲稱,他們可以在成本銷售根據(jù) 15 美元每人。此外,改進(jìn)的版本操作范圍低至 5 克或 LG已經(jīng)公布?;?SIMOX SOI 材料類似的設(shè)備厚外延多晶硅也被開發(fā)。 力平衡 microaccelerometers 可以被視為其中最成功的 MEMS 目前的。一個(gè)原因他們的成功是由地震感知加速度質(zhì)譜是通過非接觸式的慣性力和輸出是一個(gè)電信號,使整個(gè)系統(tǒng)可以是氣密在一個(gè)包,保證了密封的性能的微機(jī)械結(jié)構(gòu)不會(huì)受到任何阻礙環(huán)境干擾。第二個(gè)原因是,加速度計(jì)可以找到大量的應(yīng)用在各種motioncontrol 的系統(tǒng)。一個(gè)明顯的例子是大規(guī)模應(yīng)用 在汽車安全氣囊控制。這種應(yīng)用從產(chǎn)業(yè)帶動(dòng)顯著的興趣和投資 另一個(gè)慣性檢測裝置,陀螺儀,也 有類似的操作模式的加速度,也可以找到廣泛應(yīng)用在運(yùn)動(dòng)控制,包括汽車應(yīng)用,如牽引力控制系統(tǒng)和行駛穩(wěn)系統(tǒng),消費(fèi)電子應(yīng)用,如攝像機(jī)穩(wěn)定和航模穩(wěn)定計(jì)算機(jī)應(yīng)用,例如慣性鼠標(biāo),機(jī)器人應(yīng)用,當(dāng)然,軍事應(yīng)用。因此,微機(jī)械陀螺儀已接收旺盛在近幾年的發(fā)展努力 作為高速旋轉(zhuǎn)的零件,軸承在一個(gè)傳統(tǒng)的陀螺儀是很難小型化和批量制造 ,通過微機(jī)械技術(shù)生產(chǎn)低成本器件,微機(jī)械陀螺儀是專門振動(dòng)類型,包括雙萬向支架結(jié)構(gòu),懸臂梁結(jié)構(gòu),音叉結(jié)構(gòu)和振動(dòng)環(huán)結(jié)構(gòu)。其中的振環(huán)裝置是最先進(jìn)的,這是開發(fā)由 LIGA-iike后電路工藝結(jié)合比電鑄金屬的微觀結(jié)構(gòu)與 CMOS電路用于控制和讀出電子。 雖然沒有這些微機(jī)械陀螺儀的有已經(jīng)商業(yè)化的是,這是很可能的是某種形式的 MEMS 陀螺儀將被大規(guī)模生產(chǎn),在不久的將來。 參考文獻(xiàn) 1 S.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育技術(shù)在行政決策支持系統(tǒng)中的應(yīng)用
- 心理輔導(dǎo)在教育中的關(guān)鍵作用
- 抖音商戶編導(dǎo)短視頻開頭吸引力制度
- 全球石油市場供需格局調(diào)整與價(jià)格走勢對能源市場供需預(yù)測技術(shù)的應(yīng)用研究報(bào)告
- 浙江省寧波市鎮(zhèn)海區(qū)仁愛中學(xué)2024-2025學(xué)年數(shù)學(xué)七年級第一學(xué)期期末質(zhì)量檢測試題含解析
- 貴州黔南經(jīng)濟(jì)學(xué)院《可摘局部義齒工藝技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江杭州上城區(qū)2025屆化學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測試題含解析
- 2024-2025學(xué)年陜西省咸陽市秦嶺中學(xué)數(shù)學(xué)七年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析
- 公路客運(yùn)行業(yè)2025年轉(zhuǎn)型升級與智能停車場建設(shè)研究報(bào)告
- 公路貨運(yùn)行業(yè)數(shù)字化轉(zhuǎn)型效率提升的關(guān)鍵瓶頸與突破路徑報(bào)告
- 2023貴州畢節(jié)市納雍縣人民醫(yī)院招聘第一批編外專業(yè)技術(shù)人員30人考試備考題庫及答案解析
- 兒童疼痛與舒適度評估量表
- 2020年上海市中考語數(shù)英物化五科試卷及答案
- 新華書店讀者問卷調(diào)查表
- GB/T 20946-2007起重用短環(huán)鏈驗(yàn)收總則
- GB/T 18391.3-2009信息技術(shù)元數(shù)據(jù)注冊系統(tǒng)(MDR)第3部分:注冊系統(tǒng)元模型與基本屬性
- GB/T 10610-2009產(chǎn)品幾何技術(shù)規(guī)范(GPS)表面結(jié)構(gòu)輪廓法評定表面結(jié)構(gòu)的規(guī)則和方法
- 濟(jì)源幼兒園等級及管理辦法
- 房地產(chǎn)開發(fā)全流程培訓(xùn)講義課件
- DB44-T 2163-2019山地自行車賽場服務(wù) 基本要求-(高清現(xiàn)行)
- 云南省特種設(shè)備檢驗(yàn)檢測收費(fèi)標(biāo)準(zhǔn)
評論
0/150
提交評論