外文翻譯--下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響_第1頁
外文翻譯--下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響_第2頁
外文翻譯--下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響_第3頁
外文翻譯--下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響_第4頁
外文翻譯--下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

附 錄 Influence of Front Double wishbone Independent Suspension Performance on Front Rubber Bushing Stiffness of Lower Control Arm Liu Xintian, Hung Hu ,Wang Jichang, Zhao Lihui, Gao Hui, WangYansong Abstract-Front double wishbone Independent suspension is built according to hard point parameters of a car. After the rubber bushing stiffness of lower control arm is changed The suspension performance is analyzed and discussed with multibody dynamic and Suspension Kinematics theory. The conclusion can be drawn as follows:when wheels are hoping, All the stiffness of lower control arm have no effect on camber angle, caster angle and kingpin_incl_angle, and torsion stiffness of rubber bushing has heavy effect on toe angle, but axial, radial stiffness have no effect ,While steering, all the stiffness of lower control arm rubber bushing have no effect on camber angle and toe angle, torsion stiffness has affects on camber angle ,axial stiffness has a little and radial stiffness has heavy , axial and torsion stiffness have none on kingpin_ incl _angle, but radial stiffness has heavy During the analyze of traction force and brake force ,torsion stiffness of lower control arm rubber bushing has no effect on camber angle, kingpin_ incl_ angle and toe angle , axial stiffness has a little, and radial stiffness heavy , According to the curve of caster angle VS brake force, radial and axial stiffness of rubber bushing have a little affects on caster angle, but torsion stiffness none Keywords-Front Double Wishbone Independent Suspension, rubber bushing, stiffness I. INTRODUCTION Double wishbone independent suspension is widely used on automobile now. Two wishbones have equal length or not. Equal length of double wishbone independent suspension is Not usually used now , Unequal length of double wishbone independent suspension can keep good road ability and reduce the interference between suspension and steer bar ,with reasonable structural parameters and Proper arrangements to make the parameter of wheel spin and wheel location floating in Permissible range. therefore, it is widely used in front suspension of car and small truck. Front double wishbone independent suspension is regard as research object using multi body dynamics and Suspension Kinematics theory to analyze and discus the influence of suspension performance by axial , torsion , radical stiffness of rubber bushing. II THE MODEL OF THE MULTI BODY DYNAMICS Multibody dynamics theory is the subject that study on the movement rule of the object in system . It is composed of multi_rigid_body dynamics and multi_fexible_body dynamics: 0),(),(),( tqqQtqqtqtqM 0),( tqQ Where q, 1q , nRq 2 are systems system position,speed,acceleration vector, mR is langrange multiplier, t R denote the time , M nmR denote inertia matrix of mechanical system, nmq RQ deonte constraint jaclbian matrix, Q nR denote outside force vector , mR denote location constraint equation. 0),(),(),( tqqtqtqq q ; 0),(),(),( tqqnqtqtqqq q ; Where v(q,t) ),( tqtis speed right side, tqtqqtqqntqq 2)(),(is accleration right side. Initial condition q(0)= 0q q (0)= 0q Putting the initial condition into(2)and (3), the rigid movement can be calculated by above functions III FRONT DOUBLE WISHBONE INDEPENDENT SUSPENSION MODEL Figure 1, front double wishbone independent suspension model According to the suspension key hard point value of a certain car,front double wishbone independent suspension Kinematics model is built as shown Figure 1 .The characteristics of location parameters are analyzed in some operating conditions. During the analysis, axial ,torsion, radical stiffness of rubber bushing is respectively increasing to 5 times of original, and then comparison and analysis with the original. IV THE INFLUENCE OF WHEEL LOCATION PARAMETERS BY LOWER CONTROL ARM FRONT BUSHING STIFFNESS When front rubber bushing stiffness of lower control arm is changed, the influence of wheel location parameters are discussed separately under the conditions of wheel hop, steering, traction force and braking force. A. Wheel hop Camber angle VS wheel travel Caster angle VS wheel travel Kingpin_incl_angle VS Wheel travel Toe angle VS Wheel travel Figure 2.The curve of rubber bushing stiffness of lower control arm, wheel location parameters and wheel travel. In fig 2, the four curves are under the conditions of unchanging lower control arm rubber bushing stiffness and radial, axial, torsion stiffness increasing 5 times(the changes of lower control arm rubber bushing stiffness are also like this in fig.3,4 and 5). In fig.2 while wheels is hoping ,according to the curve of camber angle vs wheel travel , caster angle vs wheel travel and kingpin_incl_angle vs wheel travel ,the conclusion is drawn that radial ,axial and torsion stiffness of rubber bushing has no the toe angle ,Radical stiffness of rubber bushing has heavy on the toe angle, but axial and torision stiffness have a little from the curve of toe angle vs wheel travel. B Steering analyze Camber angle VS Steering angle Caster angle VS Steering angle Kingpin_incl_angle vs steering angle Toe angle vs steering angle Figure 3.The curve of rubber bushing stiffness of lower control arm ,wheel location parameters and Steering angle In fig.3,While steering ,according to the curve of Camber angle VS Steering angle and Toe angle VS Steering angle ,radial ,axial and torsion stiffness of rubber bushing has no effect on camber angle and toe angle .In the curve of caster angle VS Steering angle, torsion stiffness of rubber bushing has no effect on caster angle ,radical stiffness has a little but axial stiffness heavy .Axial and torsion stiffness of rubber bushing has no effect on kingpin_ incl_ angle ,but axial stiffness has heavy by the curve of kingpin_incl_angle VS Steering angle. C brake force analyze Caster angle vs brake force Kingpin_incl_angle vs brake force Toe angle vs brake force Figure 4. The curve of rubber stiffness of lower control arm ,wheel location parameters and brake force In fig.4,when braking ,according to the curve of Camber angle VS Brake force, kingpin_incl_angle VS Brake force and Toe angle VS Brake force, torsion stiffness of rubber bushing has no effect on the camber angle, kingpin_incl_angle and toe angle ,axial stiffness has a little, but radial stiffness heavy .In the curve of caster angle VS Brake angle ,radial and axial stiffness of rubber bushing have a little effect on caster angle ,but torsion stiffness has none. D traction force analyze Camber angle vs traction force Caster angle vs traction force Kingpin_incl_angle vs traction force Toe angle vs traction force Figure 5. The curve of rubber bushing stiffness of lower control arm, wheel location parameters and traction force In fig.5, while braking, according to the curve of Camber angle VS Traction force, kingpin_incl_angle VS Traction force and Toe angle VS traction force ,torsion stiffness of rubber bushing has little effect on the camber angle, kingpin_ incl_ angle and toe angle, axial stiffness has a little, but radial stiffness heavy. In the curve of caster angle VS Traction angle, radial and axial stiffness have a little effect on caster angle, and torsion stiffness has none. V. CONCLUSIONS Using multi-body dynamics and suspension Kinematics theory to analyze the influence of wheels location parameter. when the radial, axial and torsion stiffness of lower control arm front ,rear rubber bushing is changing . when wheels hop,according to the analyze result of radial, axial, torsion stiffness of lower control arm front rubber bushing ,all the stiffness of lower control arm have no effect on camber angle, caster angle ,caster angle and kingpin _incl_ angle ,and torsion stiffness of rubber bushing has heavy effect on toe angle, but axial radial stiffness have no effect .while steering, all the stiffness of lower control arm rubber bushing have no effect on camber angle and toe angle , torsion stiffness has no on caster angle, axial stiffness has little and radial stiffness has heavy ,axial and torsion stiffness have none on kingpin _ incl _ angle, but radial stiffness has heavy. In the analyze of traction force and brake force, torsion stiffness of lower control arm rubber bushing has no effect on camber angle , kingpin_ incl _ angle and toe angle ,axial stiffness has a little, and radial stiffness heavy. According to the curve of caster angle VS brake force, radial and axial stiffness of rubber bushing have a little affects on caster angle ,but torsion stiffness none. 下控制臂橡膠襯套剛度對雙橫臂獨立懸架影響 摘要 -前雙橫臂獨立懸架的建立是根據(jù)汽車硬點參數(shù),對 性能進(jìn)行了分析,并與多體動力學(xué)和懸架運動學(xué)進(jìn)行了理論探討??梢缘贸鋈缦陆Y(jié)論 :當(dāng)車輪需要運轉(zhuǎn)時, 所有的下控制臂的剛度并沒有影響外傾角,后傾角和主銷內(nèi)傾角,橡膠襯套和扭轉(zhuǎn)剛度對前束角產(chǎn)生很大影響, 而軸向,徑向剛度沒有任何效果。然而在轉(zhuǎn)向時,所有的下控制臂襯套并無外傾角和前束角的影響,及扭轉(zhuǎn)剛度對彎度角的影響, 軸向剛度,徑向剛度相對較大,軸向和扭轉(zhuǎn)剛度對主銷內(nèi)傾角無影響,但徑向剛度較大影響。 在分析牽引力和制動力的時候, 下控制臂扭轉(zhuǎn)橡膠襯套剛度沒有對車輪外傾角,主銷內(nèi)傾角和前束角產(chǎn)生影響,對軸向剛度影響的卻很少,徑向剛度大, 根據(jù)后傾角 與制動力曲線,徑向和軸向橡膠襯套剛度對施力者有一個小角度的影響,但扭轉(zhuǎn)剛度不變。 關(guān)鍵詞 -前雙橫臂獨立懸架,橡膠襯套,剛度 I、 簡介 如今, 雙橫臂獨立懸架被廣泛用于汽車行業(yè)中。等長橫臂和不等長橫臂,現(xiàn)在等長的雙橫臂獨立懸架通常不是很常用,不等長的雙橫臂獨立懸架可以保持良好的能力和減少道路懸掛之間的干擾,如果能夠設(shè)置合理的結(jié)構(gòu)參數(shù)和適當(dāng)安排,就可以以使車輪打滑和車輪定位參數(shù)在允許范圍內(nèi)浮動。因此,它被廣泛應(yīng)用于汽車和小卡車前懸架等。 前雙橫臂獨立懸架被做為研究對象,運用多體動力學(xué)和懸架運動學(xué)理論來分析懸浮軸, 扭轉(zhuǎn),橡膠襯套剛度性能影響的激勵方面等內(nèi)容。 II、 多體運動學(xué)分析 根據(jù)多體運動學(xué)研究物體運動規(guī)律 : 0),(),(),( tqqQtqqtqtqM ; 0),( tqQ ; 初始條件 q(0)= 0q q (0)= 0q III、 前雙橫臂獨立懸架模型 依 據(jù)某懸架關(guān)鍵點的重要性,建立前雙橫臂獨立懸架運動學(xué)模型如圖 1 所示 .在某些工況下分析,尋找位置參數(shù)的特點。 在分析過程中,軸向,扭轉(zhuǎn),橡膠襯套剛度分別比原來相比增長了 5 倍,然后比較,并與原有的數(shù)據(jù)分析 。 圖 a 前雙橫臂獨立懸架模型 IV、 下橫臂對車輪定位參數(shù)的影響 當(dāng) 橡膠襯套控制臂的剛度改變時, 對車輪定位參數(shù)的影響進(jìn)行了車輪下單獨跳,轉(zhuǎn)向,牽引力和制動力的條件等方面的討論。 A. 輪跳 車輪外傾角與車 輪跳動 主銷后傾角與車輪跳動 主銷內(nèi)傾角與車輪跳動 車輪前束角與車輪跳動 在圖 2 中,在四條曲線下不變的情況下控制臂襯套剛度橡膠和徑向,軸向,扭轉(zhuǎn)剛度增加 5 倍(下控制臂襯套剛度也像 3, 4 和 5 那樣)。根據(jù)彎度角曲線與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論