無錫市江陰市要塞片2016屆九年級下期中數(shù)學試卷含答案解析_第1頁
無錫市江陰市要塞片2016屆九年級下期中數(shù)學試卷含答案解析_第2頁
無錫市江陰市要塞片2016屆九年級下期中數(shù)學試卷含答案解析_第3頁
無錫市江陰市要塞片2016屆九年級下期中數(shù)學試卷含答案解析_第4頁
無錫市江陰市要塞片2016屆九年級下期中數(shù)學試卷含答案解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第 1 頁(共 25 頁) 2015年江蘇省無錫市江陰市要塞片九年級(下)期中數(shù)學試卷 一、選擇題(本大題共有 10小題,每題 3分,共 30 分每小題只有一個選項是正確的,請將正確選項前的字母代號寫在答題卷的相應位置上) 1 2 的絕對值是( ) A B C 2 D 2 2下列運算中正確的是( ) A B( a b)( a b) = 2a2( a) 10( a) 4=下列美麗的圖案,既是軸對稱圖形又是中心對稱圖形的個數(shù)是( ) A 1 個 B 2 個 C 3 個 D 4 個 4如圖, E 在 ,且 E, D=75,則 B 的度數(shù)為( ) A 20 B 30 C 40 D 50 5如圖,點 A 是反比例函數(shù) y= ( x 0)圖象上一點, x 軸于點 B,點 C 在 x 軸上,且 C,若 面積等于 6,則 k 的值等于( ) A 3 B 6 C 8 D 12 6一個長方體的三視圖如圖所示,若其俯視圖為正方形,則長方體的高和底面邊長分別為( ) 第 2 頁(共 25 頁) A 5, 3 B 2, 3 C 3, 5 D 5, 3 7某商品的標價為 200 元, 8 折銷售仍賺 40 元,則商品進價為( )元 A 140 B 120 C 160 D 100 8如圖, 周長為 28,對角線 交于點 O點 E 是 中點, 0,則 周長為( ) A 28 B 24 C 12 D 17 9已知圓錐的底面半徑為 3面積為 15圓錐的母線與高的夾角為 (如圖所示),則 ) A B C D 10如圖,在矩形 , , ,若點 M、 N 分別是線段 的兩個動點,則 N 的最小值為( ) A 8 C 4 D 6 二、填空題(本大題共 8小題,每空 2分,共 20分請把答案直接填寫在答題卷相應位置上) 11據(jù)媒體報道,我國因環(huán)境污染造成的巨大經濟損失,每年高達 680000000 元,這個數(shù)用科學記數(shù)法表示為 元 12分解因式: 4x= ; 使 有意義的 x 的取值范圍是 13已知方程 x2+3=0 的一個根是 1,則它的另一個根是 , m 的值是 14已知二次函數(shù)的圖象如圖,則這個二次 函數(shù)的表達式為 第 3 頁(共 25 頁) 15如圖,四邊形 O 的內接四邊形,已知 10,則 度數(shù)為 16如圖,每個小正方形邊長為 1,則 的高 長為 17有一組數(shù)據(jù)如下: 1, 3, a, 5, 7,它們的平均數(shù)是 4,則這組數(shù)據(jù)的方差是 18如圖 1,在平面直角坐標 系中,將 置在第一象限,且 x 軸直線 y= x 軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度 l 與直線在x 軸上平移的距離 m 的函數(shù)圖象如圖 2 所示,那么 長為 三、解答題(本大題共有 10小題,共 80 分請在答題卷指定區(qū)域內作答,解答時應寫出必要的文字說明、證明過程或演算步驟) 19計算: ( 1) ( 2) 20解方程與解不等式組: ( 1)解方程: 4x 6=0 ( 2)解不等式組: 21某校根據(jù)開展 “陽光體育活動 ”的要求,決定主要開設 A:乒乓球, B:籃球, C:跑步,D:跳繩這四種運動項目為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖請你結合圖中的信息解答下列問題: 第 4 頁(共 25 頁) ( 1)樣本中喜歡 B 項目的人數(shù)百分比是 ,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ; ( 2)把條形統(tǒng)計圖補充完整; ( 3)已知該校有 1000 人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少? 22有甲、乙兩個不透明的布袋,甲袋中裝 3 個完全相同的小球,分別標有數(shù)字 1, 2, 3;乙袋中也裝 3 個完全相同的小球,分別標有數(shù)字 1, 2, 0;現(xiàn)從甲袋中隨機抽取一個小球,記錄標有的數(shù)字為 x,再從乙袋中隨機抽取一個小球,記錄標有的數(shù)字為 y,確定點 x, y) ( 1)用樹狀圖或列表法列舉點 M 所有可能的坐標; ( 2)求點 M( x, y)在函數(shù) y= x+1 的圖象上的概率 23如圖,在 , C, 一個外角 實驗與操作: 根據(jù)要求進行尺規(guī)作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法) ( 1)作 平分線 ( 2)作線段 垂直平分線,與 于點 F,與 交于點 E,連接 猜想并證明: 判斷四邊形 形狀并加以證明 24如圖,小島在港口 P 的北偏西 60方向,距港口 56 海里的 A 處,貨船從港口 P 出發(fā),沿北偏東 45方向勻速駛離港口 P, 4 小時后貨船在小島的正東方向求貨船的航行速度(精確到 里 /時,參考數(shù)據(jù): 25如圖,已知 O 的直徑,點 P 在 延長線上, O 于點 D,過點 B 作直于 延長線于點 C,連接 延長,交 點 E ( 1)求證: E; 第 5 頁(共 25 頁) ( 2)若 , ,求 O 半徑的長 26某服裝公司招工廣告承諾:熟練工人每月工資至少 3000 元每天工作 8 小時,一個月工作 25 天月工資底薪 800 元,另加計件工資加工 1 件 A 型服裝計酬 16 元,加工 1 件 2 元在工作中發(fā)現(xiàn)一名熟練工加工 1 件 A 型服裝和 2 件 B 型服裝需 4 小時,加工 3 件 A 型服裝和 1 件 B 型服裝需 7 小時(工人月工資 =底薪 +計件工資) ( 1)一名熟練工加工 1 件 A 型服裝和 1 件 B 型服裝各需要多少小時? ( 2)一段時間后,公 司規(guī)定: “每名工人每月必須加工 A, B 兩種型號的服裝,且加工 A 型服裝數(shù)量不少于 B 型服裝的一半 ”設一名熟練工人每月加工 A 型服裝 a 件,工資總額為 你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾? 27方成同學看到一則材料,甲開汽車,乙騎自行車從 M 地出發(fā)沿一條公路勻速前往 N 地,設乙行駛的時間為 t( h),甲乙兩人之間的距離為 y( y 與 t 的函數(shù)關系如圖 1 所示,方成思考后發(fā)現(xiàn)了圖 1 的部分正確信息,乙先出發(fā) 1h,甲出發(fā) 20 分鐘后與乙相遇, ,請你幫助方成同學解決以下問題: ( 1)分別求出線段 在直線的函數(shù)表達式; ( 2)當 15 y 25 時,求 t 的取值范圍; ( 3)分別求出甲、乙行駛的路程 S 甲 、 S 乙 與時間 t 的函數(shù)表達式,并在圖 2 所給的直角坐標系中分別畫出它們的圖象 28如圖,頂點為 A 的拋物線 y=a( x+2) 2 4 交 x 軸于點 B( 1, 0),連接 原點 M 點 A 作 x 軸交 點 D,點 C 為拋物線與 x 軸的另一個交點,連接 ( 1)求拋物線的解析式、直線 解析式; ( 2)若動點 P 從點 O 出發(fā),以每秒 1 個單位長度 的速度沿線段 點 D 運動,同時動點Q 從點 C 出發(fā),以每秒 2 個單位長度的速度沿線段 點 O 運動,當其中一個點停止運動時另一個點也隨之停止運動 問題一:當 t 為何值時, 等腰三角形? 問題二:當 t 為何值時,四邊形 面積最???并求此時 長 第 6 頁(共 25 頁) 第 7 頁(共 25 頁) 2015年江蘇省無錫市江陰市要塞片九年級(下)期中數(shù)學試卷 參考答案與試題解析 一、選擇題(本大題共有 10小題,每題 3分,共 30 分每小題只有一個選項是正確的,請將正確選項 前的字母代號寫在答題卷的相應位置上) 1 2 的絕對值是( ) A B C 2 D 2 【考點】 絕對值 【分析】 根據(jù)絕對值的定義解答 【解答】 解: | 2|=2, 故選 C 2下列運算中正確的是( ) A B( a b)( a b) = 2a2( a) 10( a) 4=考點】 平方 差公式;同底數(shù)冪的除法;單項式乘單項式;負整數(shù)指數(shù)冪 【分析】 根據(jù)負整數(shù)指數(shù)冪,平方差公式,單項式乘法,同底數(shù)冪的除法分別求出每一部分的值,再選擇即可 【解答】 解: A、結果是 9,故本選項錯誤; B、結果是 本選項錯誤; C、結果是 2本選項錯誤; D、結果是 本選項正確; 故選 D 3下列美麗的圖案,既是軸對稱圖形又是中心對稱圖形的個數(shù)是( ) A 1 個 B 2 個 C 3 個 D 4 個 【考點】 中心對稱圖形;軸對稱圖 形 【分析】 根據(jù)軸對稱圖形與中心對稱圖形的概念求解 【解答】 解:第一個圖形不是軸對稱圖形,不是中心對稱圖形; 第二個圖形是軸對稱圖形,也是中心對稱圖形; 第三個圖形是軸對稱圖形,是中心對稱圖形; 第四個圖形是軸對稱圖形,是中心對稱圖形 共有 3 個圖形既是軸對稱圖形,也是中心對稱圖形, 第 8 頁(共 25 頁) 故選 C 4如圖, E 在 ,且 E, D=75,則 B 的度數(shù)為( ) A 20 B 30 C 40 D 50 【考點】 平行線 的性質;等腰三角形的性質 【分析】 根據(jù)等腰三角形兩底角相等求出 C 的度數(shù),再根據(jù)兩直線平行,內錯角相等解答即可 【解答】 解: E, D= D=75, C=180 75 2=30, B= C=30 故選 B 5如圖,點 A 是反比例函數(shù) y= ( x 0)圖象上一點, x 軸于點 B,點 C 在 x 軸上,且 C,若 面積等于 6,則 k 的值等于( ) A 3 B 6 C 8 D 12 【考點】 反比例函數(shù)系數(shù) k 的幾何意義 【分析】 首先確定三角形 面積,然后根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義確定 【解答】 解: C, S S 6=3, |k|=2S , 反比例函數(shù)的圖象位于第一象限, k=6, 故選 B 6一個長方體的三視圖如圖所示,若其俯視圖為正方形,則長方 體的高和底面邊長分別為( ) 第 9 頁(共 25 頁) A 5, 3 B 2, 3 C 3, 5 D 5, 3 【考點】 由三視圖判斷幾何體 【分析】 由主視圖可得長方體的高和底面正方形的對角線長,利用勾股定理即可求得長方體的底面邊長 【解答】 解: 主視圖的長為 3 ,俯視圖為正方形, 長方體的底面邊長為 3 =3, 主視圖的高就是幾何體的高, 這個長方體的高和底面邊長分別是 5, 3 故選 D 7某商品的標價為 200 元, 8 折銷售仍賺 40 元,則商品進價為( )元 A 140 B 120 C 160 D 100 【考點】 一元一次方程的應用 【分析】 設商品進價為每件 x 元,則售價為每件 00 元,由利潤 =售價進價建立方程求出其解即可 【解答】 解:設商品的進價為每件 x 元,售價為每件 00 元, 由題意,得 00=x+40, 解得: x=120 故選: B 8如圖, 周長為 28,對角線 交于點 O點 E 是 中點, 0,則 周長為( ) A 28 B 24 C 12 D 17 【考點】 平行四邊形的性質;三角形中位線定理 【分析】 由平行四邊形的性質和已知條件得出 , C=14,再證明 中位線,得出 E=7,即可得出結果 【解答】 解: 四邊形 平行四邊 形, D, C, D= , 周長為 28, C=14, 點 E 是 中點, 中位線, 第 10 頁(共 25 頁) E= ( C) =7, 周長 =E+7=12; 故選: C 9已知圓錐的底面半徑為 3面積為 15圓錐的母線與高的夾角為 (如圖所示),則 ) A B C D 【考點】 圓錐的計算 【分析】 先根據(jù)扇形的面積公式 S= LR 求出母線長,再根據(jù)銳角三角函數(shù)的定義解答即可 【解答】 解:設圓錐的母線長為 R,由題意得 15=3R, 解得 R=5 圓錐的高為 4, 故選 B 10如圖,在矩形 , , ,若點 M、 N 分別是線段 的兩個動點,則 N 的最小值為( ) A 8 C 4 D 6 【考點】 軸對稱 形的性質 【分析】 過 B 點作 垂線,使 邊的線段相等,到 E 點,過 E 作 直 F 點, 是所求的線段 【解答】 解:過 B 點作 垂線,使 邊的線段相等,到 E 點,過 E 作 直 B 于 F 點, , , , 第 11 頁(共 25 頁) 上的高為 ,所以 = ,即 , 故選 A 二、填空題(本大題共 8小題,每空 2分,共 20分請把答案直接填寫在答題卷相應位置上) 11據(jù)媒體報道,我國因環(huán)境污染造成的巨大經濟損失,每年高達 680000000 元,這個數(shù)用科學記數(shù)法表示為 08 元 【考點 】 科學記數(shù)法 表示較大的數(shù) 【分析】 科學記數(shù)法的表示形式為 a10中 1|a| 10, n 為整數(shù)確定 n 的值時,要看把原數(shù)變成 a 時,小數(shù)點移動了多少位, n 的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值 1 時, n 是正數(shù);當原數(shù)的絕對值 1 時, n 是負數(shù) 【解答】 解:將 680000000 用科學記數(shù)法表示為 08 故答案為: 08 12分解因式: 4x= x( x+2)( x 2) ; 使 有意義的 x 的取值范圍是 x3 【考點】 提公因式法與公式法的綜合運用;二次根式有意義的條件 【分析】 原式提取 x,再利用平方差公式分解即可;根據(jù)負數(shù)沒有平方根求出 x 的范圍即可 【解答】 解:原式 =x( 4) =x( x+2)( x 2); 由題意得: x 30,即 x3, 故答案為: x( x+2)( x 2); x3 13已知方程 x2+3=0 的一個根是 1,則它的另一個根是 3 , m 的值是 2 【考點】 根與系數(shù)的關系 【分析】 利用一元二次方程的根與系數(shù)的關系,兩根的和是 m,兩個根的積是 3,即可求解 【解答】 解:設方程 的另一個解是 a,則 1+a= m, 1a= 3, 解得: m= 2, a=3 故答案是: 3, 2 第 12 頁(共 25 頁) 14已知二次函數(shù)的圖象如圖,則這個二次函數(shù)的表達式為 y=2x 3 【考點】 待定系數(shù)法求二次函數(shù)解析式 【分析】 根據(jù)圖象設出拋物線的兩根形式 y=a( x+1)( x 3),將( 0, 3)代入求出 a 的值,即可確定出解析式 【解答】 解:根據(jù)圖象設拋物線解析式為 y=a( x+1)( x 3), 將( 0, 3)代入解析式得: 3= 3a,即 a=1, 則拋物線解析式為 y=( x+1)( x 3) =2x 3 故答案為: y=2x 3 15如圖,四邊形 O 的內接四邊形,已知 10,則 度數(shù)為 125 【考點】 圓內接四邊形的性質;圓周角定理 【分析】 根據(jù)圓周角定理求出 A 的度數(shù),根據(jù)圓內接四邊形的性質計算即可 【解答】 解:由圓周角定理得, A= 5, 四邊形 O 的內接 四邊形, A+ 80, 25, 故答案為: 125 16如圖,每個小正方形邊長為 1,則 的高 長為 【考點】 勾股定理;三角形的面積 【分析】 根據(jù)網格,利用勾股定理求出 長, 長,以及 上的高,利用三角形面積公式求出三角形 積,而三角形 積可以由 積的一半來求,利用面積法即可求出 長 【解答】 解:根據(jù)勾股定理得: =5, 第 13 頁(共 25 頁) 由網格得: S 24=4,且 S D= 5 5, 解得: 故答案為: 17有一組數(shù)據(jù)如下: 1, 3, a, 5, 7,它們的平均數(shù)是 4,則這組數(shù)據(jù)的方差是 4 【考點】 方差;算術平均數(shù) 【分析】 先由平均數(shù)的公式計算出 a 的值,再根據(jù)方差的公式計算即可 【解答】 解: 數(shù)據(jù) 1, 3, a, 5, 7 的平均數(shù)是 4, a=45 1 3 5 7=4, 這組數(shù)據(jù)的方差是 ( 1 4) 2+( 3 4) 2+( 4 4) 2+( 5 4) 2+( 7 4) 2=4 故答案為 4 18如圖 1,在平面直角 坐標系中,將 置在第一象限,且 x 軸直線 y= x 軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度 l 與直線在x 軸上平移的距離 m 的函數(shù)圖象如圖 2 所示,那么 長為 或 【考點】 動點問題的函數(shù)圖象 【分析】 根據(jù)平移的特點結合圖 2,找出相應的線段 , , , , ,再利用等腰直角三角形的特點和銳角三角函數(shù) =2,最后用勾股定理求出 【解答】 解: 當 3 時如圖 1, 由圖可知: , , , G= 直線解析式為: y= x 第 14 頁(共 25 頁) 5 等腰直角三角形 H= 2 =2, G 2=1, = = ; 當 時,如圖 2, , , =2, 由圖可知: , , M= 4=4, 同 可得, H, , = , H+, H=4 = , = = 故答案為 或 三、解答題(本大題共有 10小題,共 80 分請在答題卷指定區(qū)域內作答,解答時應寫出必要的文字說明、證明過程或演算步驟) 19計算: ( 1) ( 2) 【考點】 分式的混合運算;實數(shù)的運算;零指數(shù)冪;負整數(shù)指數(shù)冪;特殊角的三角函數(shù)值 【分析】 ( 1)根據(jù)特殊角的三角函數(shù)值、負整數(shù)整數(shù)冪和零指數(shù)冪的意義計算; 第 15 頁(共 25 頁) ( 2)先把括號內通分和除法運算化為乘法運算,然后約分即可 【解答】 解:( 1)原式 =2 2 +9 1 =8; ( 2)原式 = ( ) = ( ) =( x+4) = x 4 20解方程與解不等式組: ( 1)解方程: 4x 6=0 ( 2)解不等式組: 【考點】 解一元一次不等式組;解一元二次方程 【分析】 ( 1)公式法求解即可; ( 2)分別求出每一個不 等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集 【解答】 解:( 1) a=1, b= 4, c= 6, 4 4) 2 41( 6) =16+24=40 0, 則 x= =2 , 故 + , ; ( 2)解不等式 x 3( x 2) 4,得: x1, 解不等式 ,得: x 4, 故不等式組的解集為: 1x 4 21某校根據(jù)開展 “陽光體育活動 ”的要求,決定主要開設 A:乒乓球, B:籃球, C:跑步,D:跳繩這四種運動項目為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖請你結合圖中的信息解答下列問題: ( 1)樣本中喜歡 B 項目的人數(shù)百分比是 20% ,其所在扇形統(tǒng)計圖中 的圓心角的度數(shù)是 72 ; ( 2)把條形統(tǒng)計圖補充完整; 第 16 頁(共 25 頁) ( 3)已知該校有 1000 人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少? 【考點】 條形統(tǒng)計圖;用樣本估計總體;扇形統(tǒng)計圖 【分析】 ( 1)利用 1 減去其它各組所占的比例即可求得喜歡 B 項目的人數(shù)百分比,利用百分比乘以 360 度即可求得扇形的圓心角的度數(shù); ( 2)根據(jù)喜歡 A 的有 44 人,占 44%即可求得調查的總人數(shù),乘以對應的百分比即可求得喜歡 B 的人數(shù),作出統(tǒng)計圖; ( 3)總人數(shù) 1000 乘以喜歡乒乓球的人數(shù)所占的百分比即可求解 【解答】 解:( 1) 1 44% 8% 28%=20%,所在扇形統(tǒng)計圖中的圓心角的度數(shù)是:36020%=72; 故答案為: 20%, 72; ( 2)調查的總人數(shù)是: 4444%=100(人), 則喜歡 B 的人數(shù)是: 10020%=20(人), ( 3)全校喜歡乒乓球的人數(shù)是 100044%=440(人) 答:根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是 440 人 22有甲、乙兩個不透明的布袋,甲袋中裝 3 個完全相同的小球,分別標有數(shù)字 1, 2, 3;乙袋中也裝 3 個完全相同的小球,分別標有數(shù)字 1, 2, 0;現(xiàn)從甲袋中隨機抽取一個小球,記錄標有的數(shù)字為 x,再從乙袋中隨機抽取一個小球,記錄標有的數(shù)字為 y,確定點 x, y) ( 1)用樹狀圖或列表法列舉點 M 所有可能的坐標; ( 2)求點 M( x, y)在函數(shù) y= x+1 的圖象上的概率 【考點】 列表法與樹狀圖法;一次函數(shù)圖象上點的坐標特征 【分析】 ( 1)用樹狀圖法展示所有 9 種等可能的結果數(shù); ( 2)根據(jù)一次函數(shù)圖象上點的坐標特征,從 9 個點中找出滿足條件的點,然后根據(jù)概率公式計算 【解答】 解:( 1)畫樹狀圖: 共有 9 種等可能的結果數(shù),它們分別是:( 1, 1),( 1, 2),( 1, 0),( 2, 1),( 2,2),( 2, 0),( 3, 1),( 3, 2),( 3, 0); ( 2)因為在直線 y= x+1 的圖象上的點有:( 1, 0),( 2, 1),( 3, 2), 第 17 頁(共 25 頁) 所以點 M( x, y)在函數(shù) y= x+1 的圖象上的概率 P= 23如圖,在 , C, 一個外 角 實驗與操作: 根據(jù)要求進行尺規(guī)作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法) ( 1)作 平分線 ( 2)作線段 垂直平分線,與 于點 F,與 交于點 E,連接 猜想并證明: 判斷四邊形 形狀并加以證明 【考點】 作圖 復雜作圖;角平分線的性質;線段垂直平分線的性質 【分析】 先作以個角的交平分線,再作線段的垂直平分線得到幾何圖形,由 C 得 分 利用三角形外角性質可得 根據(jù)線段垂直平分線的性質得 C, 是可證明 以 E,然后根據(jù)菱形的判定方法易得四邊形 形狀為菱形 【解答】 解:如圖所示, 四邊形 形狀為菱形理由如下: C, 分 而 直平分 C, 在 , E, 即 相垂直平分, 四邊形 形狀為菱形 第 18 頁(共 25 頁) 24如圖,小島在港口 P 的北偏西 60方向,距港口 56 海里的 A 處,貨船從港口 P 出發(fā),沿北偏東 45方向勻速駛離港口 P, 4 小時后貨船在小島的正東方向求貨船的航行速度(精確到 里 /時,參考數(shù)據(jù): 【考點】 解直角三角形的應用 【分析】 由已知可得 0, A=30, 6 海里,要求貨船的航行速度,即是求 長,可先在直角三角形 利用三角函數(shù)求出 后利用三角函數(shù)求出可 【解答】 解:設貨船速度為 x 海里 /時, 4 小時后貨船在點 B 處,作 點 Q 由題意 6 海里, x 海里, 在直角三角形 , 0, 所以 8 在 直角三角形 , 5, 所以, B2 x 所以, 2 x=28, 解得: x=7 答:貨船的航行速度約為 里 /時 25如圖,已知 O 的直徑,點 P 在 延長線上, O 于點 D,過點 B 作直于 延長線于點 C,連接 延長,交 點 E ( 1)求證: E; ( 2)若 , ,求 O 半徑的長 第 19 頁(共 25 頁) 【考點】 切線的性質;解直角三角形 【分析】 ( 1)本題可連接 O 于點 D,得到 于 到出 E,根據(jù)等腰三角形的性質和等量代換可得結果; ( 2)由( 1)知, 到 B,根據(jù)三角函數(shù)的定義即可得到結果 【解答】 ( 1)證明:連接 O 于點 D, E, D, E, E; ( 2)解:由( 1)知, B, , 在 , = , A, A+ , , O 半徑 =3 第 20 頁(共 25 頁) 26某服裝公司招工廣告承諾:熟練工人每月工資至少 3000 元每天工作 8 小時,一個月工作 25 天月工資底薪 800 元,另加計件工資加工 1 件 A 型服裝計酬 16 元,加工 1 件 2 元在工作中發(fā)現(xiàn)一名熟練工加工 1 件 A 型服裝和 2 件 B 型服裝需 4 小時,加工 3 件 A 型服裝和 1 件 B 型服裝需 7 小時(工人月工資 =底薪 +計件工資) ( 1)一名熟練工加工 1 件 A 型服裝和 1 件 B 型服裝各需要多少小時? ( 2)一段時間后,公司規(guī)定: “每名工人每月必須加工 A, B 兩種型號的服裝,且加工 A 型服裝數(shù)量不少于 B 型服裝的一半 ”設一名熟練工人每月加工 A 型服裝 a 件,工資總額為 你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾? 【考點】 一次函數(shù)的應用;二元一次方程組的應用;一元一次不等式的應用 【分析】 ( 1)設熟練工加工 1 件 A 型服裝需要 x 小時,加工 1 件 B 型服裝需要 y 小時,根據(jù) “一名熟練工加工 1 件 A 型服裝和 2 件 B 型服裝需 4 小時,加工 3 件 A 型服裝和 1 件 小時 ”,列出方程組,即可解答 ( 2)當一名熟練工一個月加工 A 型服裝 a 件時,則還可以加工 B 型服裝( 258 2a)件從而得到 W= 8a+3200,再根據(jù) “加工 A 型服裝數(shù)量不少于 B 型服裝的一半 ”,得到 a50,利用一次函數(shù)的性質,即可解答 【解答】 解:( 1)設熟練工加工 1 件 A 型服裝需要 x 小時,加工 1 件 B 型服裝需要 y 小時 由題意得: , 解得: 答:熟練工加工 1 件 A 型服裝需要 2 小時,加工 1 件 B 型服裝需 要 1 小時 ( 2)當一名熟練工一個月加工 A 型服裝 a 件時,則還可以加工 B 型服裝( 258 2a)件 W=16a+12( 258 2a) +800, W= 8a+3200, 又 a , 解得: a50, 8 0, W 隨著 a 的增大則減小, 當 a=50 時, W 有最大值 2800 2800 3000, 該服裝公司執(zhí)行規(guī)定后違背了廣告承諾 27方成同學看到一則材料,甲開汽車,乙騎自行車從 M 地出發(fā)沿一條公路勻速前往 N 地,設乙行駛的時間為 t( h),甲乙兩人之間的距離為 y( y 與 t 的函數(shù)關系如圖 1 所示,方成思考后發(fā)現(xiàn)了圖 1 的部分正確信息,乙先出發(fā) 1h,甲出發(fā) 20 分鐘后與乙相遇, ,請你幫助方成同學解決以下問題: 第 21 頁(共 25 頁) ( 1)分別求出線段 在直線的函數(shù)表達式; ( 2)當 15 y 25 時,求 t 的取值范圍; ( 3)分別求出甲、乙行駛的路程 S 甲 、 S 乙 與時間 t 的函數(shù)表達式,并在圖 2 所給的直角坐標系中分別畫出它們的圖象 【考點】 一次函數(shù)的應用 【分析】 ( 1)設線段 在直線的函數(shù)表達式為 y=點 B、 C 的坐標代入其中得出關于 方程組即可求出結論;設線段 在直線的函數(shù)表達式為 y=點 C、 D 的坐標代入其中得出關于 方程組即可得出結論; ( 2)根據(jù)線段 求出乙騎車的速度,從而得出線段 函數(shù)解析式,結合題意列出關于 t 的一元一次不等式,解不等式即可得出結論; ( 3)根據(jù)圖象求出甲開車的速度,由路程 =速度 時間得出 S 甲 、 S 乙 與時間 t 的函數(shù)表達式,畫出圖形即可 【解答】 解:( 1)設線段 在直線的函數(shù)表達式 為 y= 將點 B( , 0),點 C( 2, 30)代入函數(shù)解析式,得 ,解得: 故線段 在直線的函數(shù)表達式為 y=45t 60( t2) 設線段 在直線的函數(shù)表達式為 y= 將點 C( 2, 30),點 D( 4, 0)代入函數(shù)解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論