




已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
理數(shù)基本 運算 題庫學(xué)生 版 7 內(nèi)容 基本要求 略高要求 較高要求 有理數(shù)運算 理解乘方的意義 掌握有理數(shù)的加、減、乘、除、乘方及簡單的混合運算(以三步為主) 能運用有理數(shù)的運算解決簡單問題 有理數(shù)的運算律 理解有理數(shù)的運算律 能用有理數(shù)的運算律簡化運算 板塊 一 、 有理數(shù) 基本 加、減混合運算 有理數(shù)加法法則: 同號兩數(shù)相加,取相同的符號,并把絕對值相加 . 絕對值不相等的異號兩 數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值 . 一個數(shù)同 0 相加,仍得這個數(shù) . 有理數(shù)加法的運算步驟: 法則是運算的依據(jù),根據(jù)有理數(shù)加法的運算法則,可以得到加法的運算步驟: 確定和的符號; 求和的絕對值,即確定是兩個加數(shù)的絕對值的和或差 . 有理數(shù)加法的運算律: 兩個加數(shù)相加,交換加數(shù)的位置,和不變 . a b b a (加法交換律 ) 三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變 . ( ) ( )a b c a b c (加法結(jié)合律 ) 有理數(shù)加法的運算技巧: 分?jǐn)?shù)與小數(shù)均有時,應(yīng)先化為統(tǒng)一形式 . 帶分?jǐn)?shù)可分為整數(shù)與分?jǐn)?shù)兩部分參與運算 . 多個加數(shù)相加時,若有互為相反數(shù)的兩個數(shù),可先結(jié)合相加得零 . 若有可以湊整的數(shù),即相加得整數(shù)時,可先結(jié)合相加 . 若有同分母的分?jǐn)?shù)或易通分的分?jǐn)?shù),應(yīng)先結(jié)合在一起 . 符號相同的數(shù)可以先結(jié)合在一起 . 有理數(shù)減法法則: 減去一個數(shù),等于加這個數(shù)的相反數(shù) . ()a b a b 有理數(shù)減法的運算步驟: 例題精講 中考要求 有理數(shù)基本 運算 理數(shù)基本 運算 題庫學(xué)生 版 7 把減號變?yōu)榧犹枺ǜ淖冞\算符號) 把減數(shù)變?yōu)樗南喾磾?shù) (改變性質(zhì)符號) 把減法轉(zhuǎn)化為加法,按照加法運算的步驟進(jìn)行運算 . 有理數(shù)加減混合運算的步驟: 把算式中的減法轉(zhuǎn)化為加法; 省略加號與括號; 利用運算律及技巧簡便計算,求出結(jié)果 . 注意:根據(jù)有理數(shù)減法法則,減去一個數(shù)等于加上它的相反數(shù),因此加減混合運算可以依據(jù)上述法則轉(zhuǎn)變?yōu)橹挥屑臃ǖ倪\算,即為求幾個正數(shù),負(fù)數(shù)和 0 的和,這個和稱為代數(shù)和 以把加號與每個加數(shù)外的括號均省略,寫成省略加號和的形式 . 例如: ( 3 ) ( 0 . 1 5 ) 9 ( 5 ) ( 1 1 ) 3 0 . 1 5 9 5 1 1 , 它的含義是正 3,負(fù) 9,正 5,負(fù) 11 的和 . 【例 1】 計算: 5 1 1 6( 2 . 3 9 ) ( 1 . 5 7 ) ( 3 ) ( 5 ) ( 2 ) ( 7 . 6 1 ) ( 3 2 ) ( 1 . 5 7 )6 7 6 7 【鞏固】 計算: 11( 0 . 7 5 ) 0 . 3 7 5 ( 2 )84 【例 2】 計算: 3 1 3 3 5 1 4 ; 【例 3】 計算: 3 1 21 2 1 34 6 3 理數(shù)基本 運算 題庫學(xué)生 版 7 【例 4】 計算: 4 1 3 4 . 57 2 7 ; 【例 5】 計算 110 . 5 2 . 5 0 . 336 【例 6】 計算 : 2 3 1 3 2 ( 1 2 ) ( ) 2 7 3 4 2 4 2 7 3 【例 7】 計算: 2 1 2( 7 3 8 ) ( 7 8 . 3 6 ) ( 5 3 ) ( 1 3 . 6 4 ) ( 4 3 )2 3 2 3 【例 8】 計算: 1 1 1 10 ( ) ( ) ( ) ( )3 4 6 2 【例 9】 計算: 9 . 3 7 1 2 . 8 4 6 . 2 4 3 . 1 2 理數(shù)基本 運算 題庫學(xué)生 版 7 【例 10】 計算: 1 8 9 6 1 7131 4 2 1 1 4 7 3 5 【例 11】 計算: 112 . 7 5 ( 3 ) ( 0 . 5 ) ( 7 )42 【例 12】 計算: 1 1 1 1| | | 0 | | | ( ) | |2 3 9 4 【鞏固】 21( 4 ) ( 3 )33 21( 6 ) ( 9 ) | 3 | 7 . 4 9 . 2 ( 4 )55 17( 1 4 ) ( 5 ) ( 1 . 2 5 )88 1 1 1( 8 . 5 ) 3 ( 6 ) 1 13 3 2 5 3 1 7( 9 ) 1 5 ( 3 ) ( 2 2 . 5 ) ( 1 5 )1 2 4 4 1 2 4 3 4( 1 8 ) ( 5 3 ) ( 5 3 . 6 ) ( 1 8 ) ( 1 0 0 )5 5 5 1 1 3 2| 1 ( ) |3 5 5 3 4 . 7 ( 3 . 3 ) ( 5 . 6 ) ( 2 . 1 ) 1 1 1 1( 3 ) ( 3 ) 3 ( 3 )4 4 4 4 【鞏固】 若 0a , 0b , 則 0 【鞏固】 若 0a , 0b , 則 0 理數(shù)基本 運算 題庫學(xué)生 版 7 【鞏固】 若 0a , 0b ,則 () 0; 【鞏固】 若 0a , 0b ,且 | | | |,則 0. 【例 13】 (第 14 屆希望杯 )有一串?dāng)?shù): 2003 , 1999 , 1995 , 1991 , ,按一定的規(guī)律排列,那 么這串?dāng)?shù)中前 個數(shù)的和最小 【例 14】 設(shè)三個互不相等的有理數(shù),既可分別表示為 1 a b a, , 的形式,又可分別表示為 0 b ,的形式,則2004 2001 【例 15】 給出一連串連續(xù)整數(shù): 2 0 3 2 0 2 . . . 2 0 0 3 2 0 0 4, , , ,這串連續(xù)整數(shù)共有 個;它們的和是 【例 16】 1997 個不全相等的有理數(shù)之和為 0 ,則這 1997 個有理數(shù)中 ( ) A 至少有一個是零 B 至少有 998 個正數(shù) C 至少有一個是負(fù)數(shù) D 至多有 995 個是負(fù)數(shù) 【鞏固】 若 0a b c d ,則以下四個結(jié)論 中,正確的是 ( ) A a b c d 一定是正數(shù) B d c a b 可能是負(fù)數(shù) C d c b a 一定是正數(shù) D c d b a 一定是正數(shù) 【例 17】 北京市 2007 年 5 月份某一周的日最高氣溫(單位: C )分別為: 25, 28, 30, 29, 31, 32, 28,這周的日最高氣溫的平均值為( ) A. 28C B. 29C C. 30C D. 31C 【例 18】 超市新進(jìn)了 10 箱橙子,每箱標(biāo)準(zhǔn)重量為 50貨后超市復(fù)秤結(jié)果如下(超市標(biāo)準(zhǔn)重量的千 克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù)): + + 理數(shù)基本 運算 題庫學(xué)生 版 7 【例 19】 出租車司機(jī)小李某天下午的營運全都是在東西方向的人民大街上進(jìn)行的 ,如果規(guī)定向東為正, 向西為負(fù),他這天下午行車?yán)锍瘫硎救缦?: 15 , 2 , 5 , 1 , 10 , 3 , 2 , 12 , 4 , 5 ,6 , 將最后一名乘客送到目的地時,小李距離下午出車時的出發(fā)點多遠(yuǎn) ? 如果汽車耗油量為 /千米,這天下午小李共耗油多少升 ? 【鞏固】 A 市的出租車無起步價,每公里收費 2 元,不足 1 公里的按 1 公里計價, 9 月 4 號上午 A 市 某出租司機(jī)在南北大道上載人,其承載乘客的里程記錄為: 、 、 8 、 (單位:公里,向北行駛記為正,向南行駛記為負(fù)),車每公里耗油 ,每升油 4 元,那么他這一上 午的凈收入是多少元?他最后距離出發(fā)點多遠(yuǎn)? 【例 20】 數(shù)軸的原點 O 上有一個蝸牛,第 1 次向正方向爬 1 個單位長度,緊接著第 2 次反向爬 2 個單位長度,第 3 次向正方向爬 3 個單位長度,第 4 次反向爬 4 個單位長度 ,依次規(guī)律爬下去,當(dāng)它爬完第 100次處在 B 點 求 O 、 B 兩點之間的距離(用單位長度表示) 若點 C 與原點相距 50 個單位長度,蝸牛的速度為每分鐘 2 個單位長度,需要多少時間 才能到達(dá)? 若蝸牛的速度為每分鐘 2 個單位長度,經(jīng)過 1 小時蝸牛離 O 點多遠(yuǎn)? 【鞏固】 電子跳蚤在數(shù)軸上的某一點0K,第一步0 個單位到點1K,第二步由點1 個單位到點2K,第三步有點2 個 單位到點3K,第四步由點3 個單位到點4K, ,按以上規(guī)律跳了 100 步時,電子跳蚤落在數(shù)軸上的點100 求電子跳蚤的初始位 置點0 理數(shù)基本 運算 題庫學(xué)生 版 7 【鞏固】 在整數(shù) 1, 3, 5, 7, , 21k , , 2005 之間填入符號 “ ”和 “ ”號,依此運算,所有可能的代數(shù)和中最小的非負(fù)數(shù)是多少? 【鞏固】 在 1, 3, 5, , 101 這 51 個奇數(shù)中的每個數(shù)的前面任意添加一個正號或一個負(fù)號,則其代數(shù)式的絕對值最小為多少? 【鞏固】 在數(shù) 1, 2, 3, , 1998 前添符號 “+”或 “-”,并依次運算,所得結(jié)果中最小的非負(fù)數(shù)是多少? 【例 21】 試?yán)谜叫蔚拿娣e,計算以下無窮個數(shù)的和: 1 1 1 1 1 1 1 . 8 1 6 3 2 6 4 1 2 8 【例 22】 在數(shù)學(xué)活動中,小明為了求2341 1 1 1 1. 2 2 2 n 的值 (結(jié)果用 n 表示),設(shè)計了如圖所示的幾何圖形 圖 2圖 112 412 312 212 理數(shù)基本 運算 題庫學(xué)生 版 7 請你用這個幾何圖形求2341 1 1 1 1. 2 2 2 n 的值 請你用圖 2,再設(shè)計一個能求231 1 1 1. 2 2 n 的值的幾何圖形 【例 23】 ( 4級) (蕪湖市課改實驗區(qū)中考試題) 小王上周五在股市以收盤價每股 25 元買進(jìn)某公司股票 1000 股,在接下來的一周交易日內(nèi),小王記下該股票每日收盤價相比前一天的漲跌情況(單位:元) 星期 一 二 三 四 五 每股漲跌(元) 2 根據(jù)上表回答如下問題: 星期二收盤時,該股票每股多少元? 本周內(nèi)該股票收盤時的最高價,最低價分別是多少? 已知買入股票與賣出股票均需要支付成交金額的千分之五的交易費,若小王在本周五以收盤價將全部股票賣出,他的受益情況如何? 板塊 二、 有理數(shù) 基本 乘 法 、除法 有理數(shù)乘、除法 : 有理數(shù)乘法 有理數(shù)乘法法則: 兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘 0 相乘,都得 0. 有理數(shù)乘法運算律: 兩個數(shù)相乘,交換因數(shù)的位置,積相等 . ab (乘法交換律 ) 三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等 . ()a (乘法結(jié)合律 ) 一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加 . ()a b c a b a c (乘法分配律 ) 有理數(shù)乘法法則的推廣: 幾個不等于 0 的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù) 因數(shù)的個數(shù)是偶數(shù)時,積為正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積為負(fù)數(shù) . 幾個數(shù)相乘,如果有一個因數(shù)為 0,則積為 0. 在進(jìn)行乘法運算時,若有帶分?jǐn)?shù),應(yīng)先化為假分?jǐn)?shù),便于約分;若有小數(shù)及分?jǐn)?shù),一般先將小數(shù)化為分?jǐn)?shù),或湊整計算;利用乘法分配律及其逆用,也可簡化計算 . 在進(jìn)行有理數(shù)運算時,先確定符號,再計算絕對值,有括號的先算括號里的數(shù) . 理數(shù)基本 運算 題庫學(xué)生 版 7 【例 24】 看誰算的又對又快 : 3 4 5 8 2 6 【例 25】 計算: 4 1 1 3( 3 ) 1 1 55 9 2 1 1 【例 26】 計算: 1571 ( 8)16 【例 27】 計算: 9 9 98 1 2 5 1 2 4 1 21 6 1 6 1 6 【例 28】 計算: 1 1 1 11 2 2 1 1 14 2 6 1 2 【鞏固】 計算下列各題: 30 . 2 5 0 . 5 7 0 45 理數(shù)基本 運算 題庫學(xué)生 版 0 7 【鞏固】 計算: 110 . 0 3 3 3 323 【鞏固】 計算: 7 3 5 ( 1 ) ( 3 6 )1 2 4 6 【鞏固】 計算: 1 1 1( 0 . 2 5 ) ( 5 ) ( 3 . 5 ) ( ) 22 4 4 【鞏固】 計算: 1 1 4( ) 1 ( ) 1 68 4 5 【鞏固】 計算: 1 1 17 1 1 1 3 ( )7 1 1 1 3 ; 【鞏固】 計算: 1 1 13 . 5 5 2 . 8 7 ( ) ( ) 6 . 4 23 3 3 理數(shù)基本 運算 題庫學(xué)生 版 1 7 【鞏固】 計算: 1 1 1 1 13 6 ( )2 3 4 6 9 . 【例 29】 計算: 71 0 0 0 . 0 1 9 9 9 011 【例 30】 計算: 18 1 2 0 . 1 2 5 0 . 23 【例 31】 1 1 1 1( 1 ) ( 1 ) ( 1 ) . . . . . ( 1 ) _ _ _ _ _ _ _1 9 9 8 1 9 9 7 1 9 9 6 1 0 0 0 【鞏固】 計算: 1 1 1 1 1( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )4 9 1 6 2 5 2 5 0 0 L【例 32】 積 1 1 1 1 11 1 1 . . . 1 11 3 2 4 3 5 9 8 1 0 0 9 9 1 0 1 的值的整數(shù)部分是 理數(shù)基本 運算 題庫學(xué)生 版 2 7 【例 33】 設(shè) 2個正整數(shù)1 2 3 . na a a a, , , ,任意改變他們的順序后,記作1 2 3 . nb b b b, , , ,若 1 1 2 2 3 3 . a b a b a b a b ,則( ) A P 一定是奇數(shù) B P 一定是偶數(shù) C當(dāng) n 是奇數(shù)時, P 是偶數(shù) D當(dāng) n 是偶數(shù)時, P 是奇數(shù) 【例 34】 若 a , b , c , d 是互不相等的整數(shù),且 9則 a b c d 的值為 ( ) A 0 B 4 C 8 D無法確定 【鞏固】 如果 4 個不同的正整數(shù) m , n , p , q 滿足 ( 7 ) ( 7 ) ( 7 ) ( 7 ) 4m n p q ,那么 m n p q 的值是多少? 【例 35】 如果 , 均為正數(shù),且 1 5 2 1 6 2 1 7 0a b c b a c c a b , ,那么 值等于 【例 36】 若 19 98 0,則 ( ) A. 正數(shù) B. 非正數(shù) C. 負(fù)數(shù) D. 非負(fù)數(shù) 【鞏固】 奇數(shù)個負(fù)數(shù)相乘,積的符號為 , 個負(fù)數(shù)相乘,積的符號為正 . 【鞏固】 如果 22( ) ( ) 4a b a b ,則一定成立的是 ( ) A a 是 b 的相反數(shù) B a 是 b 的相反數(shù) C a 是 b 的倒數(shù) D a 是 b 的倒數(shù) 【鞏固】 a 、 b 、 c 為非零有理數(shù),它們的積必為正數(shù)的是( ) A 0a , b 、 c 同號 B 0b , a 、 c 異號 C 0c , a 、 b 異號 D a 、 b 、 c 同號 【鞏固】 若 , 三個數(shù)互不相等,則在 a b b c c ab c c a a b , ,中,正數(shù)一定有 ( ) A 0 個 B 1 個 C 2 個 D 3 個 理數(shù)基本 運算 題庫學(xué)生 版 3 7 : 有理數(shù)除法 有理數(shù)除法法則: 除以一個不等于 0 的數(shù),等于乘這個數(shù)的倒數(shù) . 1a b , ( 0b ) 兩數(shù)相除,同 號得正,異號得負(fù),并把絕對值相除; 0 除以任何一個不等于 0 的數(shù),都得 0. 有理數(shù)除法的運算步驟: 首先確定商的符號,然后再求出商的絕對值 . 【例 37】 計算: 1 1 13 2 13 3 5 【例 38】 計算: 112 1 0 3 523 【鞏固】 計算: 2 3 1( 4 ) ( )3 2 4 ; 【鞏固】 計算: 71( ) 2 ( 3)93 ; 【鞏固】 計算: 1 1 1 1 1( ) ( )2 3 4 5 6 0 ; 理數(shù)基本 運算 題庫學(xué)生 版 4 7 【鞏固】 計算: 44192 ( )77; 【鞏固】 計算: 1 9 ( 7 ) 1 2 8 ( 7 ) 3 3 ( 7 ) ; 【鞏固】 計算: 5 3 1 5( ) ( 1 . 2 5 ) ( 3 ) 1 . 4 ( )2 4 4 2 3 . 【例 39】 如果 0, 0,且 ( ) 0a b c,試確定 a 、 b 、 c 的符號 . 【例 40】 用 “ ”或 “ ”填空 如果 0, 0那么 b 0 ; 如果 0 0么 0 . 理數(shù)基本 運算 題庫學(xué)生 版 5 7 【鞏固】 如果 0 0試確定 符號 . 【例 41】 觀察下面的式子: 2 2 4 2 2 4 ;3 1 3 13 4 3 4 ;2 2 2 24 1 4 14 5 4 5 ;3 3 3 35 1 5 15 6 5 64 4 4 4 ,小明歸納了上面各式得出一個猜想:兩個有理數(shù)的積等于這兩個有理數(shù)的和,小明的猜想正確嗎?為什么? 請你觀察上面各式的結(jié)構(gòu)特點,歸納出一個猜想,并證明 你的猜想 【例 42】 已知 a 、 b 互 為相反數(shù), c 、 d 互為負(fù)倒數(shù), x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多元主體參與機(jī)制對產(chǎn)教融合的促進(jìn)作用
- 浙江省湖州市2024-2025學(xué)年八年級物理第一學(xué)期期末經(jīng)典試題含解析
- 四川省營山縣聯(lián)考2024-2025學(xué)年八年級物理第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 四川省閬中學(xué)2024年物理八上期末綜合測試模擬試題含解析
- 知名連鎖餐廳加盟合作協(xié)議書
- 電影制作公司財務(wù)管理全流程解析
- 物流行業(yè):物流運輸安全與質(zhì)量管理小組的職責(zé)及優(yōu)化策略
- 2025至2030防靜電PVC板行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 醫(yī)藥實驗室安全保衛(wèi)制度和措施
- 小學(xué)四年級S版語文上冊教案編寫計劃
- 2024年安徽省合肥市北城片區(qū)七年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2025至2030中國銅冶煉行業(yè)發(fā)展現(xiàn)狀及應(yīng)用需求現(xiàn)狀分析報告
- 農(nóng)業(yè)保險培訓(xùn)課件
- 20250617國金證券機(jī)器人行業(yè)研究垂直領(lǐng)域具身智能機(jī)器人的野望416mb
- 物理●湖北卷丨2024年湖北省普通高中學(xué)業(yè)水平選擇性考試物理試卷及答案
- GB/T 5193-2007鈦及鈦合金加工產(chǎn)品超聲波探傷方法
- GB/T 1041-2008塑料壓縮性能的測定
- GA/T 1555-2019法庭科學(xué)人身損害受傷人員后續(xù)診療項目評定技術(shù)規(guī)程
- 酶學(xué)(高級生化課件)
- 新人教版七年級上冊初中生物全冊課時練(課后作業(yè)設(shè)計)
- 一諾LZYN質(zhì)量流量計使用說明書-2009版
評論
0/150
提交評論