已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)第五章-平面向量考試內(nèi)容:數(shù)學(xué)探索版權(quán)所有向量向量的加法與減法實(shí)數(shù)與向量的積平面向量的坐標(biāo)表示線段的定比分點(diǎn)平面向量的數(shù)量積平面兩點(diǎn)間的距離、平移數(shù)學(xué)探索版權(quán)所有考試要求:數(shù)學(xué)探索版權(quán)所有(1)理解向量的概念,掌握向量的幾何表示,了解共線向量的概念數(shù)學(xué)探索版權(quán)所有(2)掌握向量的加法和減法數(shù)學(xué)探索版權(quán)所有(3)掌握實(shí)數(shù)與向量的積,理解兩個(gè)向量共線的充要條件數(shù)學(xué)探索版權(quán)所有(4)了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算數(shù)學(xué)探索版權(quán)所有(5)掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題,掌握向量垂直的條件數(shù)學(xué)探索版權(quán)所有(6)掌握平面兩點(diǎn)間的距離公式,以及線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并且能熟練運(yùn)用掌握平移公式05. 平面向量 知識(shí)要點(diǎn)1.本章知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)2.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法 ;字母表示:a;坐標(biāo)表示法 aj(,).(3)向量的長度:即向量的大小,記作a.(4)特殊的向量:零向量aOaO.單位向量aO為單位向量aO1.(5)相等的向量:大小相等,方向相同(1,1)(2,2)(6) 相反向量:a=-bb=-aa+b=0(7)平行向量(共線向量):方向相同或相反的向量,稱為平行向量.記作ab.平行向量也稱為共線向量.3.向量的運(yùn)算運(yùn)算類型幾何方法坐標(biāo)方法運(yùn)算性質(zhì)向量的加法1.平行四邊形法則2.三角形法則向量的減法三角形法則,數(shù)乘向量1.是一個(gè)向量,滿足:2.0時(shí), 同向;0時(shí), 異向;=0時(shí), .向量的數(shù)量積是一個(gè)數(shù)1.時(shí),.2. 4.重要定理、公式(1)平面向量基本定理e1,e2是同一平面內(nèi)兩個(gè)不共線的向量,那么,對于這個(gè)平面內(nèi)任一向量,有且僅有一對實(shí)數(shù)1,2,使a1e12e2.(2)兩個(gè)向量平行的充要條件abab(b0)x1y2x2y1O.(3)兩個(gè)向量垂直的充要條件ababOx1x2y1y2O.(4)線段的定比分點(diǎn)公式設(shè)點(diǎn)P分有向線段所成的比為,即,則 (線段的定比分點(diǎn)的向量公式) (線段定比分點(diǎn)的坐標(biāo)公式)當(dāng)1時(shí),得中點(diǎn)公式:()或 (5)平移公式設(shè)點(diǎn)P(x,y)按向量a(,)平移后得到點(diǎn)P(x,y),則+a或曲線yf(x)按向量a(,)平移后所得的曲線的函數(shù)解析式為:yf(x)(6)正、余弦定理正弦定理:余弦定理:a2b2c22bccosA,b2c2a22cacosB,c2a2b22abcosC.(7)三角形面積計(jì)算公式:設(shè)ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長為P,外接圓、內(nèi)切圓的半徑為R,r.S=1/2aha=1/2bhb=1/2chc S=Pr S=abc/4RS=1/2sinCab=1/2acsinB=1/2cbsinA S= 海倫公式 S=1/2(b+c-a)ra如下圖=1/2(b+a-c)rc=1/2(a+c-b)rb注:到三角形三邊的距離相等的點(diǎn)有4個(gè),一個(gè)是內(nèi)心,其余3個(gè)是旁心.如圖: 圖1中的I為SABC的內(nèi)心, S=Pr 圖2中的I為SABC的一個(gè)旁心,S=1/2(b+c-a)ra 附:三角形的五個(gè)“心”;重心:三角形三條中線交點(diǎn).外心:三角形三邊垂直平分線相交于一點(diǎn).內(nèi)心:三角形三內(nèi)角的平分線相交于一點(diǎn).垂心:三角形三邊上的高相交于一點(diǎn).旁心:三角形一內(nèi)角的平分線與另兩條內(nèi)角的外角平分線相交一點(diǎn).已知O是ABC的內(nèi)切圓,若BC=a,AC=b,AB=c 注:s為ABC的半周長,即則:AE=1/2(b+c-a) BN=1/2(a+c-b) FC=1/2(a+b-c)綜合上述:由已知得,一個(gè)角的鄰邊的切線長,等于半周長減去對邊(如圖4). 特例:已知在RtABC,c為斜邊,則內(nèi)切圓半徑r=(如圖3). 在ABC中,有下列等式成立.證明:因?yàn)樗?,所以,結(jié)論!在ABC中,D是BC上任意一點(diǎn),則.證明:在ABCD中,由余弦定理,有在ABC中,由余弦定理有,代入,化簡可得,(斯德瓦定理)若AD是BC上的中線,;若AD是A的平分線,其中為半周長;若AD是BC上的高,其中為半周長.ABC的判定:ABC為直角A + B =ABC為鈍角A + BABC為銳角A + B附:證明:,得在鈍角ABC中,平行四邊形對角線定理:對角線的平方和等于四邊的平方和.空間向量1空間向量的概念:具有大小和方向的量叫做向量注:空間的一個(gè)平移就是一個(gè)向量向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量空間的兩個(gè)向量可用同一平面內(nèi)的兩條有向線段來表示2空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘向量運(yùn)算如下運(yùn)算律:加法交換律:加法結(jié)合律:數(shù)乘分配律:3 共線向量表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量平行于記作當(dāng)我們說向量、共線(或/)時(shí),表示、的有向線段所在的直線可能是同一直線,也可能是平行直線4共線向量定理及其推論:共線向量定理:空間任意兩個(gè)向量、(),/的充要條件是存在實(shí)數(shù),使.推論:如果為經(jīng)過已知點(diǎn)A且平行于已知非零向量的直線,那么對于任意一點(diǎn)O,點(diǎn)P在直線上的充要條件是存在實(shí)數(shù)t滿足等式 其中向量叫做直線的方向向量.5向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的6共面向量定理:如果兩個(gè)向量不共線,與向量共面的充要條件是存在實(shí)數(shù)使推論:空間一點(diǎn)位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點(diǎn),有 式叫做平面的向量表達(dá)式7 空間向量基本定理:如果三個(gè)向量不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組,使推論:設(shè)是不共面的四點(diǎn),則對空間任一點(diǎn),都存在唯一的三個(gè)有序?qū)崝?shù),使8 空間向量的夾角及其表示:已知兩非零向量,在空間任取一點(diǎn),作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:.9向量的模:設(shè),則有向線段的長度叫做向量的長度或模,記作:.10向量的數(shù)量積: 已知向量和軸,是上與同方向的單位向量,作點(diǎn)在上的射影,作點(diǎn)在上的射影,則叫做向量在軸上或在上的正射影. 可以證明的長度11空間向量數(shù)量積的性質(zhì): (1)(2)(3)12空間向量數(shù)量積運(yùn)算律:(1)(2)(交換律)(3)(分配律)空間向量的坐標(biāo)運(yùn)算一知識(shí)回顧:(1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對應(yīng)為橫坐標(biāo)),y軸是縱軸(對應(yīng)為縱軸),z軸是豎軸(對應(yīng)為豎坐標(biāo)).令=(a1,a2,a3),,則 (用到常用的向量模與向量之間的轉(zhuǎn)化:)空間兩點(diǎn)的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度城市綠化工程采購及養(yǎng)護(hù)服務(wù)合同3篇
- 2025年儲(chǔ)蓄科技轉(zhuǎn)讓合同
- 2025年家庭自制醬料加工合同
- 2025年品牌傳播合同
- 二零二五年度裝配式建筑抹灰施工技術(shù)規(guī)范合同4篇
- 2025年度個(gè)人自建房太陽能熱水系統(tǒng)安裝合同范本4篇
- 二零二五年度美容美發(fā)行業(yè)人力資源招聘服務(wù)合同4篇
- 2025年度高端住宅室內(nèi)外清潔保養(yǎng)服務(wù)合同3篇
- 2024年度青海省公共營養(yǎng)師之四級(jí)營養(yǎng)師能力提升試卷A卷附答案
- 2024年度青海省公共營養(yǎng)師之二級(jí)營養(yǎng)師押題練習(xí)試卷B卷附答案
- 湖北省黃石市陽新縣2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)期末考試題 含答案
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報(bào)告
- 央視網(wǎng)2025亞冬會(huì)營銷方案
- 《00541語言學(xué)概論》自考復(fù)習(xí)題庫(含答案)
- 《無砟軌道施工與組織》 課件 第十講雙塊式無砟軌道施工工藝
- 江蘇省南京市、鹽城市2023-2024學(xué)年高三上學(xué)期期末調(diào)研測試+英語+ 含答案
- 2024新版《藥品管理法》培訓(xùn)課件
- 《阻燃材料與技術(shù)》課件 第7講 阻燃橡膠材料
- 爆炸物運(yùn)輸安全保障方案
- 借名買車的協(xié)議書范文范本
- 江蘇省南京市2025屆高三學(xué)業(yè)水平調(diào)研考試數(shù)學(xué)試卷(解析版)
評(píng)論
0/150
提交評(píng)論